
https://doi.org/10.17576/apjitm-2016-0502-06

75

http://www.ftsm.ukm.my/apjitm

Asia-Pacific Journal of Information Technology and Multimedia

Jurnal Teknologi Maklumat dan Multimedia Asia-Pasifik

Vol. 5 No. 2, December 2016: 75 - 85

e-ISSN: 2289-2192

MEASURING RELIABILITY OF ASPECT-ORIENTED SOFTWARE USING A

COMBINATION OF ARTIFICIAL NEURAL NETWORK AND IMPERIALIST

COMPETITIVE ALGORITHM

MOHAMMAD ZAVVAR

 SHOLE GARAVAND

MOHAMMAD REZA NEHI

 AMANGALDI YANPI

MEYSAM REZAEI

MOHAMMAD HOSSEIN ZAVVAR

ABSTRACT

Aspect-oriented software engineering provides new ways to produce and deliver products and ultimately leads to

reliable software. Reliability is an important issue contributing to the quality of software. Thus, software engineers

need proven mechanisms to determine the extent of software reliability. In this paper, a method for measuring

reliability is proposed which takes advantage of a Multilayer Perceptron Artificial Neural Network (MLPANN).

Furthermore, an Imperialist Competitive Algorithm (ICA) is used to optimize the weights to improve network

performance. Finally, relying on Root Mean Square Error (RMSE), the proposed approach is compared to a hybrid

Genetic Algorithm- Artificial Neural Network (GA-ANN) method. The results show that the proposed approach

exhibits lower error.

Keywords: Aspect-Oriented Software reliability, Software Quality, Artificial Neural Network, Imperialist

Competitive Algorithm, Root Mean Square Error.

INTRODUCTION

Aspect-oriented software engineering provides new ways to modularize software systems by

separating multiple concerns or interventional and automatic defragmentation of the system.

Ultimately, this leads to products with greater quality and reliability (Kienzle et al., 2010;

Kiczales et al., 1997). Aspect-oriented software includes operational and non-operational

concerns. However, most methods neglect to take non-operational conditions into account, which

poses serious problems for software development. It is important to review the operating

conditions of non-operational features in sensitive software systems. High reliability ensures that

information is exchanged accurately at the time of urgency in the network.

Additionally, reliability is a prerequisite to accessibility in order to provide services and

security on the network. Therefore, the realization of goals such as customer satisfaction and

attaining maximum profits depends on providing high reliability components. As a result of the

rapid changes in software engineering, the industry is constantly trying to develop new tools and

methodologies. Small teams continue with the same conditions and without development

activities; however, a precursor is to create a new software system. Currently, software engineers

aim to upgrade current business systems and they try to create configurations which are capable

competing in the market in addition to having high performance (Bosch, 2010). Hence, instead

76

of coding, software engineering focuses on architectural design, component selection and system

integration tasks.

Software engineering is an active process that is used for both top-down and bottom-up

methods simultaneously. The architecture is the result of a top-down method. Control and

application integration cannot be carried out using old software. Therefore, system architecture

needs to enable such tasks and help teams in charge of changing the system (Bosch, 2010).

Researchers have noted that the quality of system architecture is the most important

factor contributing to the success of software engineering. An adequate software architecture is

characterized by three factors as follows (Palviainen et al., 2011):

1. Changes are easy to implement and the old components can be easily replaced with new

ones.

2. The quality of the architecture and implementation can be readily measured.

3. Guarantees that requirements are fulfilled and the system works efficiently.

In this paper, measuring reliability is proposed as a part of software quality measurement.

Reliability is one of the issues for performance quality. It is defined as operations without

software defects in specific environments and within a specified time (Rodrigues et al., 2005).

Four dimensions of reliability can be identified as follows (Rainer & Hall, 2003):

1. Probabilities: In the confidence interval, the system may have a chance of success.

2. Operations of target: The system is not considered reliable if target operation are not

performed seamlessly.

3. Time dependence: In certain timeframe or before a certain time t, the system performs

operations without the smallest defects and errors.

4. Special conditions: Under certain circumstances or in particular terms based on hardware

or communication devices, the system performs operations.

In this paper, these components are considered and evaluated as important themes.

Software reliability is important for stakeholders, especially resellers and end-users who

increasingly complain about reliability. Among other important factors such as scalability and

storage efficiency, reliability has a significant impact on the software lifecycle, because it tends

to interfere with its implementation. Reliability is a broad term: each software program that runs

in a distributed environment also encompasses various definitions (Ahmed & Wu, 2013).

Predicting software reliability applications is different from one environment to another. In

recent decades, commercial applications in distributed environments have allowed vendors

access to various technologies and components.

In addition, software reliability is a vital factor in determining the quality of software. In

many industries, reliability measurement based on the practical application of software in a

variety of industries, is associated with reduced financial and human risks. The practice enables

developers to examine software quality factors and improve their design and code. It is important

that software engineers be aware of the extent of reliability in their products. This fact highlights

the significance of software reliability.

Thus, given the importance of reliability in software, researchers need to find smart and

efficient ways to accurately measure the reliability of aspect-oriented software. So, this paper

aims to propose a novel method for measuring software reliability using Multilayer Perceptron

77

Artificial Neural Networks (MLPANN) and the Imperialist Competitive Algorithm (ICA) to

optimize the weights leading to improved network performance. The proposed approach in this

paper uses a perceptron multilayer network combined with the ICA to measure software

reliability. The method is compared to a hybrid Genetic Algorithm-Artificial Neural Network

(GA-ANN).

BACKGROUND

A review of the literature reveals that research on aspect-oriented software reliability

measurement is scarce. This section provides a brief overview of previous works in the field of

reliability and aspect-oriented software.

Cacho et al. (2006) proposed a set of metrics and a set of rules for the measurement of

products based on different aspects. This aspect-oriented framework allows developers to

evaluate their products in design and implementation phases. The metrics include Concern

Diffusion over Components (CDC), Concern Diffusion over Operations (CDO) and Concern

Diffusions over LOC (CDLOC) for separation of concerns, as well as Coupling Between

Components (CBC) and Depth Inheritance Tree (DIT) for attachment or coupling and Lack of

Cohesion in Operations (LCOO) for cohesion. Finally, a tool for the proposed method was

produced.

Aspect-oriented programming is a technique whereby secondary operations and support

business logic are distinguished from the main program (Dadhich & Mathur, 2012). A part of

this program is added to the maintenance of the facility to be constructed. Apart from the

operating conditions, in software development, operating conditions and other factors such as

reliability, compatibility and performance need to be taken into consideration. The quantitative

aspect-oriented software reliability model ISO / IEC 9126 was proposed by the authors. As a

result of the unpredictable nature of software quality features, a fuzzy multi-criteria method was

used to improve the proposed approach.

Ahmed & Wu (2013) focused on the reliability of distributed systems. Since failure

detection and the programs aimed at their discovery can provide interactions among end-users,

the methods of accuracy and reliability were discussed and explained in more detail and in terms

of individual elements why patterns of complete reliability is required to run applications in a

distributed system. Also, an analysis of recent studies was performed to predict the reliability of

large-scale distributed applications in four levels. Firstly, the conditions to enhance reliability,

and the importance of certain issues of reliability in different environments such as cloud

computing, service-oriented architecture and grid computing were expressly stated. Secondly,

factors and specific challenges as well as defect detection, error discovery, and defect

elimination were described. Thirdly, different patterns, factors and challenges in predicting and

evaluating software applications in the distributed system were discussed. Finally, the limitations

of current patterns were expressed and recommended further investigation into forecasting and

analyzing the reliability of distributed applications.

According to Palviainen et al. (2011) reliability is the most important factor in security-

critical systems, including, clinics, medical centers and traffic controllers. Moreover, given that

reliability is one of the most important features of system quality, important decisions must be

taken in designing logic to significantly impact the reliability of software systems. Therefore, in

order to achieve this goal, the authors considered architecture and components that need to be

evaluated. They carefully discussed reliability evaluation during design and implementation.

78

Zhang and Pham (2000) showed the empirical findings of 13 trading companies that

participated in a study aimed at better understanding the factors affecting reliability. The

available tools were reviewed and a detailed analysis of the most important factors in the

reliability software was conducted. A more in-depth investigation on the perspective of the

participants, managers, system engineers, programmers, testers and others involved in the project

development was emphasized. The relative weight of the two methods, including Analysis of

Variance (ANOVA) was used to analyze the factors affecting the reliability of software. Their

paper serves as a basis for further evaluation and review of important features in the software

development.

ARTIFICIAL NEURAL NETWORK

Artificial Neural Networks (ANN), are a novel computational method with applications in

machine learning and knowledge representation, which apply the knowledge gained in response

to higher projected output of complicated systems. The main idea of these networks is inspired

by the way the biological nervous system function, to process data and information in learning

and knowledge creation (Gupta, 2013). The key element of this idea is the creation of new

structures for information processing systems. The system comprises an extremely large number

of interconnected neurons to solve a problem. In many complex mathematical problems, to solve

complex nonlinear equations, a multilayer perceptron network can be easily used to tune the

weight of the parameters (Yetilmezsoy & Demirel, 2008). In this type of ANN, a three-layer

structure is used: (1) an input layer; (2) a hidden layer; and (3) an output layer that produces the

result. An example of a network Multilayer perceptron is shown in Figure 1.

FIGURE 1. Multilayer Perceptron structure with hidden neurons and output neurons with linear function

In this network, the actual output is compared with the desired output and the weights are

tuned using a supervised propagation algorithm to form the appropriate pattern. For input pattern

p, square output error for all cells output layer as follows:

2 2

1

1 1
() ()

2 2

s
p p p p

p j j

i

E d y d y


   

 (1)

where
p

jd is the desired output for the j-th cell in the output layer, s is output vector

dimension, py is the real output vector, and pd is the desired vector output . The total square

error E to P model is obtained as follows:

79

2

1 1 1

1
()

2

P P s
p p

p j j

p p j

E E d y
  

   

(2)

The objective in adjusting the weights is to minimize the cost function E, using gradient

descent. The equations updating the weights are as follows:

(1) () ()

(1)

ij

ij

ij ij w

w

w t w t t

t

  

  

(3)

where () ()
()ij

p

w

ij

E
t

w t


  


 ،  denotes the learning factor,  the moment factor,

(1)ijw t 

represents the new weight and ()ijw t is the previous weight. In this method, weights are

repeatedly updated for all learning patterns.

The process of learning stops when the total error for pattern p is less than the specified

threshold, or the number of training iterations exceeds the specified value. It should be noted that

in the training method the probability of convergence to local minima decreases.

IMPERIALIST COMPETITIVE ALGORITHM (ICA)

The ICA was developed in 2007, with the aim of optimizing the social and political processes

with a modern modeling approach (Atashpaz-Gargari & Lucas, 2007). In this algorithm, to solve

the optimization problem, N countries are considered each of which is shown with a vector and

represents a point in an n-dimensional space. Among these points, the ones having the lowest

cost according to the function of optimization are considered as a colony and the rest as the

colonizer. For every settler, first, the normalized cost is calculated as follows:

max{ }n i nC c c 

 (4)

where Cn is the imperialist cost of n, max{ }ic is the maximum cost among the imperialists and

cn represents the normalized cost of these imperialists. With the cost normalized, normalized

relative strength of each imperialist is calculated as follows:

1

imp

n
n N

i

i

C
p

C






 (5)

Therefore, the number of the imperialist colonies will be equal to:

. { .()}n n colN C round p N

 (6)

where N.Cn is the initial numbers of colonies of an empire, and Ncol is also the total number of

existing colony countries in the population of the initial countries. ICA begins with the initial

state of all empires. Figure 2 shows the colonies of an imperialist country.

80

FIGURE 2. An overview of the colonies to the imperialist

As it is shown in Figure 2, for x, the following is true:

(0, *)x U d (7)

where  is a number larger than one and close to two, the value  =2 can be a good choice.

The coefficient 1  causes the colonized country to become closer to the colonizer while

approaching in from different directions. To expand the search area around the colony, a

deviation angle equal to θ that follows a uniformly distributed random track is added to the

original vector:

(,)U   (8)

where is a parameter that controls the span of groups angle – equal to
4


in this paper. The

next step is a colonial competition. At this stage, the weakest of the weak colonial empire is

selected and is assigned to a powerful empire (not necessarily the most powerful empire) but the

probability of an empire being selected is proportional to its strength. Finally, when an empire

loses all its colonies that empire is removed from the list of empires and it is assigned to another

empire in a competition. The evolutionary process is performed in a loop that continues to satisfy

a stop condition.

THE PROPOSED METHOD

In a neural network, the aim of the learning process is to determine the optimal values of weights

and other parameters such as bias and the slope of the function in order to obtain the highest

efficiency. To estimate a function using a neural network, estimation error is defined the

difference between the network and actual outputs for the training and testing data sets. Here, the

goal is to reduce the error by appropriately adjusting the weights and other network parameters.

The commonly used method is back propagation. In this method which is inspired by gradient-

based optimization methods, the weights of each stage of learning are calculated through the

weights of the previous phase and move one step in the opposite direction of the error function

gradient.

Since each type of neural network learning leads to an optimization problem, a way forward is

to use evolutionary algorithms. In this paper, the ICA is used to determine the weight of the

neural network, then the performance of this algorithm in determining the weights of neural

networks is compared to that of a GA. The steps involved in determining the weights of the

neural network using ICA are shown in Figure 3.

81

Start

Initialize the empires

Assimilate colonies

Revolve some colonies

Is there a colony in an empire

which has lower cost than

that of the imperialist

Yes

No

Exchange the positions of that imperialist

and the colony

Compute the total cost of all empires

Imperialistic competition
Is there an empire with no

cololies

Yes

Eliminate this empire

Unite Similar Empires

Stop Condition satisfied

Yes

End

No

No

FIGURE 3. Stages of determining the weights of the neural network by algorithms of colonial competition

RESULTS AND DISCUSSIONS

In this section, the results of optimization algorithm of colonial competition for learning neural

network are studied and compared with those of a procedure based on GA.

As in Zavvar and Ramezani (2015a), a collection of data on software projects based on

aspects is used. This dataset contains 1000 samples with four inputs and one output which is the

estimated value of reliability for the considered software. The input of this dataset is as follows:

1. Concern Diffusion over Operations

2. Degree of Scattering across Classes

3. Degree of Scattering across Methods

4. Lines of Concern Code

In this study, 70 percent of data were used for training, 15 percent for validating and 15

percent for testing the neural network. The neural network used in this article, is an MLP neural

network composed of two layers with seven neurons in the hidden layer. The number of training

transitions equals 20 and trainlm was used for training network from the function. Also, in the

ICA, a total of 200 countries were considered, the number of primary Empires equals to 30 and

the algorithm is executed 50 times.

For comparison, the proposed method was compared to a GA with a population of 200, a

10 percent probability of mutation, a 60 percent probability of crossover and a total of 50

generations.

82

To evaluate and compare the proposed method with other methods, the RMSE criterion

was used. As mentioned in Zavvar and Ramezani (2015b), one of the criteria used in evaluating

models is the Root Mean Square Error (RMSE) between the expected and predicted values. The

RMSE is a suitable tool for comparing prediction errors in a dataset. This value is calculated

using the following equation:

2

1

()
n

i

i

y y

RMSE
n








 (9)

First, the individual differences are calculated and squared. Then, this mean difference is

applied and finally the square root of the average number is presented yielding RMSE. The

measure is a criterion for the accuracy of the results and usually smaller values indicate better

model fit. In addition, the results of both methods are shown with RMSE criterion. Price and

regression curves are shown for each of the methods in Figure 4.

FIGURE 4. Price and regression curves for each of the methods

In Figure 4 (top), the cost of the ICA-ANN method is compared to that of GA-ANN. As

shown, the ICA-ANN clearly outperforms GA-ANN. To achieve certain cost, ICA-ANN

requires less time. Also, after 50 iterations, the GA-ANN method achieves a cost of 0.0021134

while the ICA-ANN obtains 0.00055533 which shows that the proposed methodology exhibits a

smaller final cost. Also, the regression graph and scattering plots are shown around the

regression data for each of the methods. Moreover, at the bottom of Figure 4, regression graph and

distribution of data for each of the methods are shown in the Test phase.

Figure 4 shows that the proposed method yields values in the test that are well around the

center. In Figure 5, RMSE and performance chart of each of these methods in measuring reliability

are shown.

83

FIGURE 5. Performance chart for each of the methods

In Figure 5, the value of the reliability for each instance of data is shown along with the

predicted values for each sample. As seen, output of the colonial competitive algorithm-based

approach is closer to the targets. With respect to the performance of each method, the value of

RMSE was calculated. RMSE in the proposed approach was equal to 0.023678 while the GA-

ANN generated 0.045541 which indicates that the proposed method had fewer errors and better

accuracy in evaluating aspect-oriented software reliability.

CONCLUSION

Upon discussing the importance of measuring the reliability of aspect-oriented software and

examining its influencing factors, a method was presented based on ICA-ANN for measuring the

reliability of aspect-oriented software to improve the network performance. The ICA was used to

optimize the weights of the network. Then, the prediction accuracy of the proposed method was

compared with a hybrid GA-ANN method in terms of RSME. The proposed approach resulted in

an RMSE of 0.023678 while the value for ICA-ANN was equal to 0. 045541 indicating that the

proposed method offers better performance in measuring aspect-oriented software reliability.

This paper only focused on four effective characteristics on reliability, providing a method for

evaluating aspect-oriented software reliability that also considers other features needs further

studies that will be discussed in the future.

REFERENCES

Ahmed, W. & Wu, Y.W. 2013. A survey on reliability in distributed systems. Journal of Computer and

System Sciences, 79(8):1243-1255.

84

Atashpaz-Gargari, E. & Lucas, C. 2007. Imperialist competitive algorithm: an algorithm for optimization

inspired by imperialistic competition. IEEE Congress on Evolutionary Computation, 25-28 Sept.,

Singapore, 4661-4667.

Bosch, J. 2010. Architecture in the age of compositionality. Heidelberg: Springer-Verlag.

Cacho, N., Sant'Anna, C., Figueiredo, E., Garcia, A., Batista, T. & Lucena, C. 2006. Composing design

patterns: a scalability study of aspect-oriented programming. Proceedings of the 5th international

conference on Aspect-oriented software development. New York: ACM, 109-121.

Chen, D. J., Sheng, M. C. & Horng, M. S. 1993. Real-time distributed program reliability analysis.

Proceedings of the Fifth IEEE Symposium on Parallel and Distributed Processing. Dallas: TX,

771-778.

Dadhich, R. & Mathur, B. 2012. BM, Measuring Reliability of an Aspect Oriented Software Using Fuzzy

Logic Approach. International Journal of Engineering and Advanced Technology (IJEAT),

1(5):233-237.

Grassi, V. 2005. Architecture-based reliability prediction for service-oriented computing. Heidelberg:

Springer-Verlag.

Gupta, N. 2013. Artificial neural network. Network and Complex Systems, 3(1):24-28.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J. M. & Irwin, J. 1997.

Aspect-oriented programming. Heidelberg: Springer-Verlag.

Kienzle, J., al-Abed, W., Fleurey, F., Jézéquel, J. M. & Klein, J. 2010. Aspect-oriented design with

reusable aspect models. Heidelberg: Springer-Verlag.

Palviainen, M., Evesti, A. & Ovaska, E. 2011. The reliability estimation, prediction and measuring of

component-based software. Journal of Systems and Software, 84(6):1054-1070.

Rainer, A. & Hall, T. 2003. A quantitative and qualitative analysis of factors affecting software processes.

Journal of Systems and Software, 66(1):7-21.

Rodrigues, G. N., Rosenblum, D. S. & Uchitel, S. 2005. Reliability prediction in model-driven

development. Heidelberg: Springer-Verlag.

Yetilmezsoy, K. & Demirel, S. 2008. Artificial neural network (ANN) approach for modeling of Pb (II)

adsorption from aqueous solution by Antep pistachio (Pistacia Vera L.) shells. Journal of

Hazardous Materials, 153(3):1288-1300.

Zavvar, M. & Ramezani, F. 2015a. Comparison of ANFIS with MLP ANN in Measuring the Reliability

based on Aspect Oriented Software. International Journal of Modern Education & Computer

Science, 7(9):29-35.

Zavvar, M. & Ramezani, F. 2015b. Measuring of Software Maintainability Using Adaptive Fuzzy Neural

Network. International Journal of Modern Education & Computer Science, 7(10):27-32.

Zhang, X. & Pham, H. 2000. An analysis of factors affecting software reliability. Journal of Systems and

Software, 50(1):43-56.

Zheng, Z. & Lyu, M. R. 2008. Ws-dream: A distributed reliability assessment mechanism for web

services. IEEE International Conference on Dependable Systems and Networks with FTCS and

DCC (DSN), 23 September 2008, Anchorage, 392-397.

Zheng, Z. & Lyu, M. R. 2010. Collaborative reliability prediction of service-oriented systems.

Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering, 1-8 May, New

York, 35-44.

85

Received: 3 January 2016

Accepted: 21 March 2016

Accepted: 23 July 2016

Mohammad Zavvar,

Shole Garavand,

Mohammad Reza Nehi,

Amangaldi Yanpi,

Meysam Rezaei,

Mohammad Hossein Zavvar

Department of Computer Engineering,

Sari Branch, Islamic Azad University, Sari, Iran

zavvar.developer@gmail.com, shole_geravnd@yahoo.com, nehi@gmail.com,

amangaldi.yanpi@gmail.com, mem_re69@yahoo.com. hossein.zavvar@outlook.com

