
17 

 

Received: 15 September 2020 

Accepted: 19 February 2021 

Published: 1 June 2021 

 

 

https://doi.org/10.17576/apjitm-2021-1001-02 

Asia-Pacific Journal of Information Technology and Multimedia 
Jurnal Teknologi Maklumat dan Multimedia Asia-Pasifik 
Vol. 10 No. 1, June 2021: 17 -  26 
e-ISSN: 2289-2192 

 
 

BI-DIRECTIONAL MONTE CARLO TREE SEARCH 
 
 

KRISTIAN SPOERER 
 

 

 

ABSTRACT 

 

This paper describes a new algorithm called Bi-Directional Monte Carlo Tree Search. The essential idea of Bi-

directional Monte Carlo Tree Search is to run an MCTS forwards from the start state, and simultaneously run an 

MCTS backwards from the goal state, and stop when the two searches meet. Bi-Directional MCTS is tested on 

8-Puzzle and Pancakes Problem, two single-agent search problems, which allow control over the optimal 

solution length d and average branching factor b respectively. Preliminary results indicate that enhancing Monte 

Carlo Tree Search by making it Bi-Directional speeds up the search. The speedup of Bi-directional MCTS 

grows with increasing the problem size, in terms of both optimal solution length d and also branching factor b. 

Furthermore, Bi-Directional Search has been applied to a Reinforcement Learning algorithm. It is hoped that the 

speed enhancement of Bi-directional Monte Carlo Tree Search will also apply to other planning problems. 
 

Keywords: Single Agent Search, Monte Carlo Tree Search, Bi-Directional Search, 8-Puzzle, Pancakes Problem, 

Reinforcement Learning. 

 

 

INTRODUCTION 
 

The shortest path problem consists of finding the path through a graph which minimizes the 

total edge cost. In 1959, Djikstra (Dijkstra, 1959) proposed an algorithm for finding the 

shortest path. The algorithm expands each node, starting from the start node, according to the 

cost from the start to node n, called g(n). The next node with minimum g value of all found 

so far is expanded until the goal node is reached. 
 

In 1966 Nicholson proposed Bi-directional Search (Nicholson, 1966) to enhance 

shortest path search.  If Djikstra’s algorithm performs a unidirectional search to find the 

shortest path of length d, where the average number of edges from a node is b, then the search 

will expand 𝑂(𝑏𝑑) nodes. Bi-directional Search runs forwards from the start and backwards 

from the goal. Each direction in Bi-Directional Search hopefully expands 𝑂(𝑏𝑑 2⁄ ) nodes, and 

the sum of the two directions is less than the time required of a full Djikstra Search. 
 

In 1968 a new algorithm, called A*, extended Djikstra’s algorithm in a different way, 

by expanding the node with the smallest f value, such that f(n) = g(n) + h(n) (Hart, 1968). 

The new term h(n) is a domain heuristic underestimate of the distance to the goal node from 

node n. The heuristic directs the search towards a reasonable direction of the goal node, and 

therefore reduces the number of expanded nodes compared to Djikstra’s algorithm. Let 𝐶∗ be 

the 𝑔 value of the goal node at the end of the shortest path, i.e. cost of the shortest path. Since 

A* expands the node with smallest f value, and because ℎ is an underestimate of the actual 
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cost, the first node n which has 𝑓 = 𝑔 = 𝐶∗ will be the first goal node encountered which is 

also on the shortest path. 
(Pohl, 1969) proposed a combination, Bi-directional A*, which led to investigations as to 

whether the forwards and backwards searches would actually meet in the middle. Eventually, 

(Holte et al, 2017)  proposed a new Bi-Directional A* Search algorithm that is guaranteed to 

meet in the middle called MM. MM expands the next node with the lowest priority according 

to two f values,  
 

 𝑓𝐹 = 𝑚𝑎𝑥(𝑔𝐹(𝑛) + ℎ𝐹(𝑛), 2𝑔𝐹(𝑛)) 

 

in the forwards direction and  

 

 𝑓𝐵 = 𝑚𝑎𝑥(𝑔𝐵(𝑛) + ℎ𝐵(𝑛), 2𝑔𝐵(𝑛)) 
 

in the backwards direction. Here 𝑔𝐹  is the forwards cost from start to node n, ℎ𝐹  is an 

underestimate of the cost from node n to the goal in the forwards direction, 𝑔𝐵  is the 

backwards cost from goal to node n, and ℎ𝐵 is an underestimate of the cost from node n to the 

start backwards. Any node n which has 𝑔𝐹 >
𝐶∗

2
 will have a 𝑓𝐹 > 𝐶∗  because ℎ𝐹  is an 

underestimate, which means the MM algorithm will encounter the backwards frontier before 

expanding any node n which has a 𝑔𝐹 >
𝐶∗

2
. The logic works analogously in the backwards 

direction, and therefore MM will meet in the middle. 
 

The current paper describes a new extension of Bi-directional heuristic search which 

is based on Monte Carlo Tree Search (Coulom, 2006) (Kocsis, 2006). MCTS was highly 

influential in the development of strong Go playing programs. For Go the main challenge was 

extending the αβ algorithm. There was no known way of formalizing heuristic information 

about the value of a given Go position. Monte Carlo Tree Search uses statistical information 

from many simulated games to evaluate a Go position instead. (Gelly, 2008) reports “the first 

program to achieve human master level” in 9x9 Computer Go. Eventually, a combination of 

Monte Carlo Tree Search with deep neural networks trained by supervised learning and 

Reinforcement Learning defeated the human grand-master of Go (Silver et al, 2016). 

Afterwards Monte Carlo Tree Search showed promising results in non-game applications (see 

(Browne et al, 2012), (Goh et al, 2019), (Matsumoto et al, 2010)). 
 

The new algorithm proposed in this paper is called Bi-directional Monte Carlo Tree 

Search (Bi-directional MCTS). It can be viewed as a hybrid combining Bi-directional search 

with Monte Carlo Tree Search (MCTS), and can also be viewed as an enhancement of Monte 

Carlo Tree Search. The essential idea of Bi-directional MCTS is to run MCTS forwards from 

the start state, and simultaneously run MCTS backwards from the goal state, and stop when 

the two searches meet. Bi-directional MCTS is compared with MCTS for optimally solving 

8-Puzzle and Pancakes Problem, two single-agent search problems, and the speedup of the 

Bi-directional enhancement is analyzed. The motivation for the present analysis is to learn 

how the Bi-directional MCTS scales to larger problems. 
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METHODS 

 
BI-DIRECTIONAL MONTE CARLO TREE SEARCH 

 

This section of the paper describes the original MCTS algorithm, how it can be modified to 

solve single-agent search problems, and also how MCTS has been expanded to be Bi-

directional MCTS. 
 

FIGURE 1. the four operators of the standard Monte Carlo Tree Search algorithm. 
 

Monte Carlo Tree Search (see Figure 1) constructs a tree, starting from a single root 

node which grows as the search iterations proceed. One iteration of the Monte Carlo Tree 

Search algorithm applies four operators 
 

1. Selection - repeatedly select the best of the children nodes, typically using UCT 

(Kocsis, 2006), until a leaf node in the tree is reached. 
2. Expansion - optionally add the children of the leaf node, using one of several 

heuristics (Yajima et al, 2010), into the tree. 
3. Playout - play from the leaf node of the tree, typically using pure random moves or 

guided moves, until the end of the game. 
4. Backpropagation - update the statistics for each visited node in the tree. 

 

The work in (Schadd et al, 2008) details an application of MCTS to a single player 

game called SameGame. This present work proposes an alternative design of MCTS for 

Single Agent Search. The purpose of the present study is not a comparison with the Single 

Player MCTS in (Schadd et al, 2008), but rather as a way to make MCTS work as a Bi-

Directional algorithm.  
 

Standard Monte Carlo Tree Search can be adapted to single agent search problems 

like 8-Puzzle and Pancakes Problem by modifying two of the MCTS operators as follows. 

The selection operator stops when the tree depth reaches solution_length_limit (The 

solution_length_limit parameter effectively limits the search, which is essential because 

solutions to 8-Puzzle can form loops and might never reach a terminal state.). The playout 

operator first checks if the leaf in the tree is a solved game state and returns a special 

SOLVED_IN_TREE flag, otherwise, a playout plays pure random moves, if the resulting 

game state is solved returns 1 (success) and if the total playout length is solution_length_limit 

returns 0. 
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In the new proposed algorithm Bi-directional MCTS, two trees are kept in memory, 

an up-tree and a down-tree. The four MCTS operators are applied in sequence to the down-

tree first and then applied in sequence to the up-tree. See Figure 2 for the pseudo-code of the 

proposed algorithm. Simple logic is added to the playout operator; If the leaf of the current 

tree is found in the opposing tree then a special MET_IN_THE_MIDDLE flag is returned, 

otherwise a playout is performed as described above. 
 

 
FIGURE 2.  Pseudo-code of the proposed Bi-directional MCTS algorithm. 

 

 
TEST PROBLEMS: 8-PUZZLE AND PANCAKE PROBLEM 

 
This section of the paper describes 8-Puzzle and Pancakes Problem, the two single-agent 

search problems which are used to test the proposed Bi-directional MCTS algorithm. The 

problems were chosen for testing because they are simple to implement, both have a well 

known algorithm (A*) and admissible heuristics for producing optimal solutions, and MCTS 

and Bi-directional MCTS can easily be modified for solving both problems. Additionally, the 

Pancakes Problem is useful for modifying the branching factor b easily by increasing the 

number of pancakes N on the stack. 
 

 
 

FIGURE 3.  The 8-Puzzle problem solved state and a solvable starting state. 
 

8-Puzzle is a famous toy. The puzzle can start in any solvable non-solved state, for 

example a configuration similar to that shown right hand side of Figure 3, which can be 

optimally solved using the move sequence (LEFT, UP, RIGHT, RIGHT, DOWN, LEFT, UP, 

RIGHT, UP, LEFT, DOWN, DOWN, RIGHT, UP, LEFT, UP, LEFT). The 8-Puzzle is 

played by sliding a numbered tile next to the empty space into the empty space, thereby also 
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moving the empty space. The puzzle is solved when it eventually appears like that shown in 

the left hand side of Figure 3.  

 

 
 

FIGURE 4. The Pancake Problem solved state and possible starting state. 
 

The Pancake Problem is a famous search problem consisting of a stack of N pancakes 

of unique sizes. The starting state can be any non-solved state like that shown on the right 

hand side of Figure 4. A flip reverses the order of all pancakes on the stack from that position 

upwards. The state shown in the right hand side of Figure 4 can be optimally solved using the 

flip sequence (5, 6, 3, 6, 7, 6). The problem is solved when the pancakes are stacked in order 

like that shown in the left hand side of Figure 4. 
 

 
EXPERIMENTAL SETUP 

 

Total of 5,000 random 8-Puzzle problems were generated by applying 25 random moves 

backwards from the solved 8-Puzzle state, and 1,000 random Pancake problem states were 

generated by applying N random moves (N being the number of pancakes on the stack) 

backwards from the solved Pancake Problem state.  
 

For each random 8-Puzzle and Pancake Problem starting state, A* was run to solve 

the problem optimally, and then MCTS and also Bi-directional MCTS were run to find a 

solution. The solutions produced by MCTS and Bi-directional MCTS are compared with the 

optimal A* solution. Puzzles with optimal solution length 1 were discarded from the analysis, 

and also puzzles which weren’t optimally solved by both MCTS and Bi-directional MCTS 

algorithms. Essentially, the current analysis only considers the amount of iterations required 

to produce the optimal 8-Puzzle and Pancake Problem solution. 

  
The analysis concerns the speed enhancement of the Bi-directional enhancement of 

MCTS, so a measurement of  𝑠𝑝𝑒𝑒𝑑𝑢𝑝 was calculated using the formula  
 

𝑠𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑝𝑙𝑎𝑦𝑜𝑢𝑡𝑠𝑀𝐶𝑇𝑆

𝑝𝑙𝑎𝑦𝑜𝑢𝑡𝑠𝐵𝐷𝑀𝐶𝑇𝑆
 (1) 

 

where playoutsMCTS and playoutsBDMCTS are the number of playouts required to optimally 

solve the 8-Puzzle and Pancakes Problem problems. 
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The parameters used for the experiments are shown in Figure 5. Solution_length_limit stops 

selection and playout during MCTS and Bi-directional MCTS, and ensures theoretically the 

tree and playout are deep enough solve the puzzle. 

 
TABLE 1. The parameter settings used for the experiments 

 
 

In this analysis the Bi-directional MCTS algorithm was implemented in sequence, not in 

parallel. All puzzles and algorithms were implemented using C++. Experiments were run on 

Intel(R) Core(TM) i3-2100 CPU @ 3.10GHz, 64 bits, with 3.6G RAM. 

 

RESULTS 
 

In this section is presented the experimental results, first for 8-Puzzle and then afterwards for 

Pancakes Problem. 
 

Table 2 shows the relevant statistics for the 8-Puzzle analysis, including average 

speedup, number of samples include in the analysis, the standard deviation, and the 95% 

confidence interval which is calculated as:  
 

𝑐𝑜𝑛𝑓 = 2 ∗
𝑠𝑡𝑑𝑒𝑣

√𝑆𝑎𝑚𝑝𝑙𝑒𝑠
 (2) 

      

TABLE 2. Statistics for 8-Puzzle. 

Solution length 3 5 7 9 11 13 

Speedup 2.43 1.85 2.19 3.75 9.93 25.68 

Samples 666 808 1010 845 604 336 

Stdev. 0.65 0.43 0.72 1.54 4.65 9.88 

95% conf. int. 0.05 0.03 0.04 0.10 0.37 1.07 

 

Figure 7 shows optimal solution length l plotted against the average speedup of Bi-

directional MCTS vs MCTS over the runs that are included in the analysis. The error bars 

represent the 95% confidence interval. Also plotted is the curve 
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𝑦 = 0.02644031 ∗ 𝑒𝑥𝑝(0.52552977 ∗ 𝑥) + 1.1205256 (3) 

 

which was fitted to the experimental data using scipy curve_fit, which performs a non-linear least 

squares fit to the data.  
 

 
FIGURE 5. The speedup of BDMCTS compared to MCTS for 8-Puzzle solutions of increasing optimal solution length. 

 

 

In the case of Pancake Problem the analysis was performed on varying number of pancakes 

N where 6 ≤ N ≤ 9, and for solutions of length 6 only. Table 3 shows the relevant statistics for 

the Pancake Problem analysis. 

 
TABLE 3. Statistics for Pancake Problem. 

Pancakes (N) 6 7 8 9 

speedup 21.13 43.91 65.75 112.35 

Samples 32 108 297 232 

Stdev. 3.87 8.73 13.94 20.34 

95% conf. int. 1.37 1.68 1.61 2.67 

 

 

The speedup results are shown in Figure 9, which shows branching factor b plotted against 

average speedup of Bi-directional MCTS vs MCTS for the Pancake Problem. The error bars 

represent the 95% confidence interval. Also plotted is the curve: 
 

𝑦 = 2.20277846 ∗ 𝑒𝑥𝑝(0.44500042 ∗ 𝑥) − 9.19309151 (4) 

 

which was fitted to the experimental data using scipy curve_fit method, which performs a 

non-linear least squares fit to the data. 
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FIGURE 6. The speedup of Bi-directional MCTS compared to MCTS for Pancake Problem of increasing branching factor b. 
 

 

DISCUSSIONS 
 

Figure 5 shows that increasing the length of the optimal solution for 8-Puzzle is marked by an 

increase in the speedup of Bi-directional MCTS compared to MCTS. The speedup of Bi-

directional MCTS grows exponentially proportional to the optimal solution length. Figure 6 

shows that increasing the number of pancakes (the branching factor b) for Pancake Problem 

is marked by an increase in the speedup of the Bi-Directional enhancement of MCTS.  
 

The present work is a comparison between Monte Carlo Tree Search and a Bi-

Directional enhanced Monte Carlo Tree Search. A* was used as a tool to construct optimal 

solutions to the 8-Puzzle and Pancakes Problem, and has not been compared with either of 

the MCTS algorithms in terms of time complexity. This is because A* is guaranteed to find 

an optimal solution to the puzzles when there is an admissible heuristic, whereas MCTS and 

Bi-directional MCTS do not have the same guarantee.  Future research will analyse 

optimality guarantees of Bi-directional MCTS.  
 

Sturtevant and Felner (Sturtevant, 2018) compared four algorithms (A*, backwards 

A*, Bi-directional Brute Force Search, and Near-optimal Bi-directional Search) for solving 

four problems (Pancakes Problem, 4-peg Towers of Hanoi, Roads of Colorado, and Grid 

Mazes). They showed that A* expands fewer nodes than Bi-directional Search, if A* has a 

“strong” heuristic. Otherwise Bi-directional search expands fewer nodes. This mirrors the 

results that are shown in Figures 5 and 6 in this present work, which suggests that the version 

of uni-directional MCTS in the present work is not a “strong” heuristic for 8-Puzzle and 

Pancakes Problem. This would be because the majority of the search effort in uni-directional 

MCTS (the majority of playouts) would done in the second half the search, and therefore 
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running a Bi-directional MCTS forwards and backwards will probably remove the majority 

of the search effort by running the second half of a search in neither forward nor backward 

direction.  The version of uni-directional MCTS in the present work not being a “strong” 

heuristic for 8-Puzzle and Pancakes Problem is one explanation for the good results of Bi-

directional MCTS. 
 

Since the new proposed algorithm Bi-directional MCTS is a form of Bi-directional 

search, it can only be applied to problems where the goal state is known, e.g. roads or 

computer networks. The results described in the present article suggest that the Bi-directional 

MCTS scales well as problems grow larger, since the speed-up of Bi-directional MCTS 

compared to MCTS increases with problem size. This is encouraging for the use of Bi-

directional MCTS for larger problems because it will likely be faster than MCTS. 
 

This paper proposes a new algorithm called Bi-Directional Monte Carlo Tree Search, 

and presents preliminary results indicating that enhancing Monte Carlo Tree Search by 

making it Bi-Directional speeds up the search. Bi-directional MCTS speeds up MCTS 

exponentially with solution length d as shown in the 8-Puzzle results, and also with average 

branching factor b as shown in the Pancakes Problem results. This makes Bi-Directional 

Monte Carlo Tree Search potentially an effective search enhancement that can be applied to 

other planning problems where there is no known heuristic. Additionally, Bi-Directional 

Search has been applied to a Reinforcement Learning algorithm, which has previously been 

reported in (Baldassarre, 2003). 
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