
17

Received: 15 September 2020

Accepted: 19 February 2021

Published: 1 June 2021

https://doi.org/10.17576/apjitm-2021-1001-02

Asia-Pacific Journal of Information Technology and Multimedia
Jurnal Teknologi Maklumat dan Multimedia Asia-Pasifik
Vol. 10 No. 1, June 2021: 17 - 26
e-ISSN: 2289-2192

BI-DIRECTIONAL MONTE CARLO TREE SEARCH

KRISTIAN SPOERER

ABSTRACT

This paper describes a new algorithm called Bi-Directional Monte Carlo Tree Search. The essential idea of Bi-

directional Monte Carlo Tree Search is to run an MCTS forwards from the start state, and simultaneously run an

MCTS backwards from the goal state, and stop when the two searches meet. Bi-Directional MCTS is tested on

8-Puzzle and Pancakes Problem, two single-agent search problems, which allow control over the optimal

solution length d and average branching factor b respectively. Preliminary results indicate that enhancing Monte

Carlo Tree Search by making it Bi-Directional speeds up the search. The speedup of Bi-directional MCTS

grows with increasing the problem size, in terms of both optimal solution length d and also branching factor b.

Furthermore, Bi-Directional Search has been applied to a Reinforcement Learning algorithm. It is hoped that the

speed enhancement of Bi-directional Monte Carlo Tree Search will also apply to other planning problems.

Keywords: Single Agent Search, Monte Carlo Tree Search, Bi-Directional Search, 8-Puzzle, Pancakes Problem,

Reinforcement Learning.

INTRODUCTION

The shortest path problem consists of finding the path through a graph which minimizes the

total edge cost. In 1959, Djikstra (Dijkstra, 1959) proposed an algorithm for finding the

shortest path. The algorithm expands each node, starting from the start node, according to the

cost from the start to node n, called g(n). The next node with minimum g value of all found

so far is expanded until the goal node is reached.

In 1966 Nicholson proposed Bi-directional Search (Nicholson, 1966) to enhance

shortest path search. If Djikstra’s algorithm performs a unidirectional search to find the

shortest path of length d, where the average number of edges from a node is b, then the search

will expand 𝑂(𝑏𝑑) nodes. Bi-directional Search runs forwards from the start and backwards

from the goal. Each direction in Bi-Directional Search hopefully expands 𝑂(𝑏𝑑 2⁄) nodes, and

the sum of the two directions is less than the time required of a full Djikstra Search.

In 1968 a new algorithm, called A*, extended Djikstra’s algorithm in a different way,

by expanding the node with the smallest f value, such that f(n) = g(n) + h(n) (Hart, 1968).

The new term h(n) is a domain heuristic underestimate of the distance to the goal node from

node n. The heuristic directs the search towards a reasonable direction of the goal node, and

therefore reduces the number of expanded nodes compared to Djikstra’s algorithm. Let 𝐶∗ be

the 𝑔 value of the goal node at the end of the shortest path, i.e. cost of the shortest path. Since

A* expands the node with smallest f value, and because ℎ is an underestimate of the actual

18

cost, the first node n which has 𝑓 = 𝑔 = 𝐶∗ will be the first goal node encountered which is

also on the shortest path.
(Pohl, 1969) proposed a combination, Bi-directional A*, which led to investigations as to

whether the forwards and backwards searches would actually meet in the middle. Eventually,

(Holte et al, 2017) proposed a new Bi-Directional A* Search algorithm that is guaranteed to

meet in the middle called MM. MM expands the next node with the lowest priority according

to two f values,

 𝑓𝐹 = 𝑚𝑎𝑥(𝑔𝐹(𝑛) + ℎ𝐹(𝑛), 2𝑔𝐹(𝑛))

in the forwards direction and

 𝑓𝐵 = 𝑚𝑎𝑥(𝑔𝐵(𝑛) + ℎ𝐵(𝑛), 2𝑔𝐵(𝑛))

in the backwards direction. Here 𝑔𝐹 is the forwards cost from start to node n, ℎ𝐹 is an

underestimate of the cost from node n to the goal in the forwards direction, 𝑔𝐵 is the

backwards cost from goal to node n, and ℎ𝐵 is an underestimate of the cost from node n to the

start backwards. Any node n which has 𝑔𝐹 >
𝐶∗

2
 will have a 𝑓𝐹 > 𝐶∗ because ℎ𝐹 is an

underestimate, which means the MM algorithm will encounter the backwards frontier before

expanding any node n which has a 𝑔𝐹 >
𝐶∗

2
. The logic works analogously in the backwards

direction, and therefore MM will meet in the middle.

The current paper describes a new extension of Bi-directional heuristic search which

is based on Monte Carlo Tree Search (Coulom, 2006) (Kocsis, 2006). MCTS was highly

influential in the development of strong Go playing programs. For Go the main challenge was

extending the αβ algorithm. There was no known way of formalizing heuristic information

about the value of a given Go position. Monte Carlo Tree Search uses statistical information

from many simulated games to evaluate a Go position instead. (Gelly, 2008) reports “the first

program to achieve human master level” in 9x9 Computer Go. Eventually, a combination of

Monte Carlo Tree Search with deep neural networks trained by supervised learning and

Reinforcement Learning defeated the human grand-master of Go (Silver et al, 2016).

Afterwards Monte Carlo Tree Search showed promising results in non-game applications (see

(Browne et al, 2012), (Goh et al, 2019), (Matsumoto et al, 2010)).

The new algorithm proposed in this paper is called Bi-directional Monte Carlo Tree

Search (Bi-directional MCTS). It can be viewed as a hybrid combining Bi-directional search

with Monte Carlo Tree Search (MCTS), and can also be viewed as an enhancement of Monte

Carlo Tree Search. The essential idea of Bi-directional MCTS is to run MCTS forwards from

the start state, and simultaneously run MCTS backwards from the goal state, and stop when

the two searches meet. Bi-directional MCTS is compared with MCTS for optimally solving

8-Puzzle and Pancakes Problem, two single-agent search problems, and the speedup of the

Bi-directional enhancement is analyzed. The motivation for the present analysis is to learn

how the Bi-directional MCTS scales to larger problems.

19

METHODS

BI-DIRECTIONAL MONTE CARLO TREE SEARCH

This section of the paper describes the original MCTS algorithm, how it can be modified to

solve single-agent search problems, and also how MCTS has been expanded to be Bi-

directional MCTS.

FIGURE 1. the four operators of the standard Monte Carlo Tree Search algorithm.

Monte Carlo Tree Search (see Figure 1) constructs a tree, starting from a single root

node which grows as the search iterations proceed. One iteration of the Monte Carlo Tree

Search algorithm applies four operators

1. Selection - repeatedly select the best of the children nodes, typically using UCT

(Kocsis, 2006), until a leaf node in the tree is reached.
2. Expansion - optionally add the children of the leaf node, using one of several

heuristics (Yajima et al, 2010), into the tree.
3. Playout - play from the leaf node of the tree, typically using pure random moves or

guided moves, until the end of the game.
4. Backpropagation - update the statistics for each visited node in the tree.

The work in (Schadd et al, 2008) details an application of MCTS to a single player

game called SameGame. This present work proposes an alternative design of MCTS for

Single Agent Search. The purpose of the present study is not a comparison with the Single

Player MCTS in (Schadd et al, 2008), but rather as a way to make MCTS work as a Bi-

Directional algorithm.

Standard Monte Carlo Tree Search can be adapted to single agent search problems

like 8-Puzzle and Pancakes Problem by modifying two of the MCTS operators as follows.

The selection operator stops when the tree depth reaches solution_length_limit (The

solution_length_limit parameter effectively limits the search, which is essential because

solutions to 8-Puzzle can form loops and might never reach a terminal state.). The playout

operator first checks if the leaf in the tree is a solved game state and returns a special

SOLVED_IN_TREE flag, otherwise, a playout plays pure random moves, if the resulting

game state is solved returns 1 (success) and if the total playout length is solution_length_limit

returns 0.

20

In the new proposed algorithm Bi-directional MCTS, two trees are kept in memory,

an up-tree and a down-tree. The four MCTS operators are applied in sequence to the down-

tree first and then applied in sequence to the up-tree. See Figure 2 for the pseudo-code of the

proposed algorithm. Simple logic is added to the playout operator; If the leaf of the current

tree is found in the opposing tree then a special MET_IN_THE_MIDDLE flag is returned,

otherwise a playout is performed as described above.

FIGURE 2. Pseudo-code of the proposed Bi-directional MCTS algorithm.

TEST PROBLEMS: 8-PUZZLE AND PANCAKE PROBLEM

This section of the paper describes 8-Puzzle and Pancakes Problem, the two single-agent

search problems which are used to test the proposed Bi-directional MCTS algorithm. The

problems were chosen for testing because they are simple to implement, both have a well

known algorithm (A*) and admissible heuristics for producing optimal solutions, and MCTS

and Bi-directional MCTS can easily be modified for solving both problems. Additionally, the

Pancakes Problem is useful for modifying the branching factor b easily by increasing the

number of pancakes N on the stack.

FIGURE 3. The 8-Puzzle problem solved state and a solvable starting state.

8-Puzzle is a famous toy. The puzzle can start in any solvable non-solved state, for

example a configuration similar to that shown right hand side of Figure 3, which can be

optimally solved using the move sequence (LEFT, UP, RIGHT, RIGHT, DOWN, LEFT, UP,

RIGHT, UP, LEFT, DOWN, DOWN, RIGHT, UP, LEFT, UP, LEFT). The 8-Puzzle is

played by sliding a numbered tile next to the empty space into the empty space, thereby also

21

moving the empty space. The puzzle is solved when it eventually appears like that shown in

the left hand side of Figure 3.

FIGURE 4. The Pancake Problem solved state and possible starting state.

The Pancake Problem is a famous search problem consisting of a stack of N pancakes

of unique sizes. The starting state can be any non-solved state like that shown on the right

hand side of Figure 4. A flip reverses the order of all pancakes on the stack from that position

upwards. The state shown in the right hand side of Figure 4 can be optimally solved using the

flip sequence (5, 6, 3, 6, 7, 6). The problem is solved when the pancakes are stacked in order

like that shown in the left hand side of Figure 4.

EXPERIMENTAL SETUP

Total of 5,000 random 8-Puzzle problems were generated by applying 25 random moves

backwards from the solved 8-Puzzle state, and 1,000 random Pancake problem states were

generated by applying N random moves (N being the number of pancakes on the stack)

backwards from the solved Pancake Problem state.

For each random 8-Puzzle and Pancake Problem starting state, A* was run to solve

the problem optimally, and then MCTS and also Bi-directional MCTS were run to find a

solution. The solutions produced by MCTS and Bi-directional MCTS are compared with the

optimal A* solution. Puzzles with optimal solution length 1 were discarded from the analysis,

and also puzzles which weren’t optimally solved by both MCTS and Bi-directional MCTS

algorithms. Essentially, the current analysis only considers the amount of iterations required

to produce the optimal 8-Puzzle and Pancake Problem solution.

The analysis concerns the speed enhancement of the Bi-directional enhancement of

MCTS, so a measurement of 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 was calculated using the formula

𝑠𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑝𝑙𝑎𝑦𝑜𝑢𝑡𝑠𝑀𝐶𝑇𝑆

𝑝𝑙𝑎𝑦𝑜𝑢𝑡𝑠𝐵𝐷𝑀𝐶𝑇𝑆
 (1)

where playoutsMCTS and playoutsBDMCTS are the number of playouts required to optimally

solve the 8-Puzzle and Pancakes Problem problems.

22

The parameters used for the experiments are shown in Figure 5. Solution_length_limit stops

selection and playout during MCTS and Bi-directional MCTS, and ensures theoretically the

tree and playout are deep enough solve the puzzle.

TABLE 1. The parameter settings used for the experiments

In this analysis the Bi-directional MCTS algorithm was implemented in sequence, not in

parallel. All puzzles and algorithms were implemented using C++. Experiments were run on

Intel(R) Core(TM) i3-2100 CPU @ 3.10GHz, 64 bits, with 3.6G RAM.

RESULTS

In this section is presented the experimental results, first for 8-Puzzle and then afterwards for

Pancakes Problem.

Table 2 shows the relevant statistics for the 8-Puzzle analysis, including average

speedup, number of samples include in the analysis, the standard deviation, and the 95%

confidence interval which is calculated as:

𝑐𝑜𝑛𝑓 = 2 ∗
𝑠𝑡𝑑𝑒𝑣

√𝑆𝑎𝑚𝑝𝑙𝑒𝑠
 (2)

TABLE 2. Statistics for 8-Puzzle.

Solution length 3 5 7 9 11 13

Speedup 2.43 1.85 2.19 3.75 9.93 25.68

Samples 666 808 1010 845 604 336

Stdev. 0.65 0.43 0.72 1.54 4.65 9.88

95% conf. int. 0.05 0.03 0.04 0.10 0.37 1.07

Figure 7 shows optimal solution length l plotted against the average speedup of Bi-

directional MCTS vs MCTS over the runs that are included in the analysis. The error bars

represent the 95% confidence interval. Also plotted is the curve

23

𝑦 = 0.02644031 ∗ 𝑒𝑥𝑝(0.52552977 ∗ 𝑥) + 1.1205256 (3)

which was fitted to the experimental data using scipy curve_fit, which performs a non-linear least

squares fit to the data.

FIGURE 5. The speedup of BDMCTS compared to MCTS for 8-Puzzle solutions of increasing optimal solution length.

In the case of Pancake Problem the analysis was performed on varying number of pancakes

N where 6 ≤ N ≤ 9, and for solutions of length 6 only. Table 3 shows the relevant statistics for

the Pancake Problem analysis.

TABLE 3. Statistics for Pancake Problem.

Pancakes (N) 6 7 8 9

speedup 21.13 43.91 65.75 112.35

Samples 32 108 297 232

Stdev. 3.87 8.73 13.94 20.34

95% conf. int. 1.37 1.68 1.61 2.67

The speedup results are shown in Figure 9, which shows branching factor b plotted against

average speedup of Bi-directional MCTS vs MCTS for the Pancake Problem. The error bars

represent the 95% confidence interval. Also plotted is the curve:

𝑦 = 2.20277846 ∗ 𝑒𝑥𝑝(0.44500042 ∗ 𝑥) − 9.19309151 (4)

which was fitted to the experimental data using scipy curve_fit method, which performs a

non-linear least squares fit to the data.

24

FIGURE 6. The speedup of Bi-directional MCTS compared to MCTS for Pancake Problem of increasing branching factor b.

DISCUSSIONS

Figure 5 shows that increasing the length of the optimal solution for 8-Puzzle is marked by an

increase in the speedup of Bi-directional MCTS compared to MCTS. The speedup of Bi-

directional MCTS grows exponentially proportional to the optimal solution length. Figure 6

shows that increasing the number of pancakes (the branching factor b) for Pancake Problem

is marked by an increase in the speedup of the Bi-Directional enhancement of MCTS.

The present work is a comparison between Monte Carlo Tree Search and a Bi-

Directional enhanced Monte Carlo Tree Search. A* was used as a tool to construct optimal

solutions to the 8-Puzzle and Pancakes Problem, and has not been compared with either of

the MCTS algorithms in terms of time complexity. This is because A* is guaranteed to find

an optimal solution to the puzzles when there is an admissible heuristic, whereas MCTS and

Bi-directional MCTS do not have the same guarantee. Future research will analyse

optimality guarantees of Bi-directional MCTS.

Sturtevant and Felner (Sturtevant, 2018) compared four algorithms (A*, backwards

A*, Bi-directional Brute Force Search, and Near-optimal Bi-directional Search) for solving

four problems (Pancakes Problem, 4-peg Towers of Hanoi, Roads of Colorado, and Grid

Mazes). They showed that A* expands fewer nodes than Bi-directional Search, if A* has a

“strong” heuristic. Otherwise Bi-directional search expands fewer nodes. This mirrors the

results that are shown in Figures 5 and 6 in this present work, which suggests that the version

of uni-directional MCTS in the present work is not a “strong” heuristic for 8-Puzzle and

Pancakes Problem. This would be because the majority of the search effort in uni-directional

MCTS (the majority of playouts) would done in the second half the search, and therefore

25

running a Bi-directional MCTS forwards and backwards will probably remove the majority

of the search effort by running the second half of a search in neither forward nor backward

direction. The version of uni-directional MCTS in the present work not being a “strong”

heuristic for 8-Puzzle and Pancakes Problem is one explanation for the good results of Bi-

directional MCTS.

Since the new proposed algorithm Bi-directional MCTS is a form of Bi-directional

search, it can only be applied to problems where the goal state is known, e.g. roads or

computer networks. The results described in the present article suggest that the Bi-directional

MCTS scales well as problems grow larger, since the speed-up of Bi-directional MCTS

compared to MCTS increases with problem size. This is encouraging for the use of Bi-

directional MCTS for larger problems because it will likely be faster than MCTS.

This paper proposes a new algorithm called Bi-Directional Monte Carlo Tree Search,

and presents preliminary results indicating that enhancing Monte Carlo Tree Search by

making it Bi-Directional speeds up the search. Bi-directional MCTS speeds up MCTS

exponentially with solution length d as shown in the 8-Puzzle results, and also with average

branching factor b as shown in the Pancakes Problem results. This makes Bi-Directional

Monte Carlo Tree Search potentially an effective search enhancement that can be applied to

other planning problems where there is no known heuristic. Additionally, Bi-Directional

Search has been applied to a Reinforcement Learning algorithm, which has previously been

reported in (Baldassarre, 2003).

REFERENCES

Baldassarre, G. 2003. Forward and Bidirectional Planning Based on Reinforcement Learning and

Neural Networks in a Simulated Robot. In Anticipatory Behavior in Adaptive Learning

Systems, 179-200.

Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M., Cowling, P. I., Rohlfshagen, P., Tavener,

S., Perez, D., Samothrakis, S., and Colton, S. 2012. A survey of monte carlo tree search

methods. IEEE Transactions on Computational Intelligence and AI in Games, 4(1):1–43.

Coulom, R. 2006. Efficient selectivity and backup operators in monte-carlo tree search. In

International Conference on Computers and Games (CG 2006), 72–83.

Dijkstra, E. W. 1959. A note on two problems in connexion with graphs. In Numerische mathematik,

1(1):269–271.

Gelly, S. and Silver, D. 2008. Achieving master level play in 9 x 9 computer go. In Proceedings of the

Twenty-Third AAAI Conference on Artificial Intelligence, 1537–1540.

Goh, S. L., Kendall, G., Sabar, N. R. 2019. Monte Carlo Tree Search in Finding Feasible Solutions for

Course Timetabling Problem. In International Journal on Advanced Science Engineering

Information Technology, 9(6):1936-1943.

Hart, P. E., Nilsson, N. J., and Raphael, B. 1968. A formal basis for the heuristic determination of

minimum cost paths. In IEEE Transactions Systems Science and Cybernetics,4(2):100–107.
Holte, R. C., Felner, A., Sharon, G., Sturtevant, N. R., Chen, J. 2017. MM: A bidirectional search

algorithm that is guaranteed to meet in the middle. In Artificial Intelligence,252: 232-266.

26

Kocsis, L. and Szepesvàri, C. 2006. Bandit based monte-carlo planning. In European Conference on

Machine Learning, 282–293.

Matsumoto, S., Hirosue, N., Itonaga, K., Ueno, N., and Ishii, H. 2010. Monte-Carlo Tree Search for a

reentrant scheduling problem. In International Conference on Computers and Industrial

Engineering, 1–6.

Nicholson, T. A. J. 1966. Finding the shortest route between two points in a network. In The

Computer Journal, 9(3):275–280.

Pohl, I. 1969. Bi-directional and heuristic search in path problems. Technical Report 104, Stanford

Linear Accelerator Center.

Schadd, M. P. D., Winands, M. H. M., Jaap van den Herik, H., Chaslot, G. M. J. B., Uiterwijk, Jos W.

H. M. 2008. Single-Player Monte-Carlo Tree Search. In International Conference on

Computers and Games, 1-12.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L. van den Driessche, G., Schrittwieser, J.,

Antonoglou, I., vam Veda Lanctot, M. P., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner,

N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T. and Hassabis, D.

2016. Mastering the game of go with deep neural networks and tree search. Nature, 529:484–

489.

Sturtevant, N. R. and Felner, A. 2018. A Brief History and Recent Achievements in Bidirectional

Search. AAAI.

Yajima, T., Hashimoto, T., Matsui, T., Hashimoto, J., and Spoerer, K. 2010. Node-expansion

operators for the uct algorithm. In International Conference on Computers and Games (CG

2010), 116–123.

Kristian Spoerer
School of Computer Science,

University of Nottingham, Nottingham, United Kingdom
kristian.spoerer@nottingham.ac.uk

