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ABSTRACT 
 

In computer vision and computer graphics, 3D reconstruction is the process of capturing real objects’ shapes 

and appearances. 3D models always can be constructed by active methods which use high-quality scanner 

equipment, or passive methods that learn from the dataset. However, both of these two methods only aimed to 

construct the 3D models, without showing what element affects the generation of 3D models.  Therefore, the 

goal of this research is to apply deep learning to automatically generating 3D models, and finding the latent 

variables which affect the reconstructing process. The existing research GANs can be trained in little data with 

two networks called Generator and Discriminator, respectively. Generator can produce synthetic data, and 

Discriminator can discriminate between the generator’s output and real data. The existing research shows that 

InFoGAN can maximize the mutual information between latent variables and observation. In our approach, we 

will generate the 3D models based on InFoGAN and design two constraints, shape-constraint and parameters-

constraint, respectively. Shape-constraint utilizes the data augmentation method to limit the synthetic data 

generated in the models’ profiles. At the same time, we also try to employ parameters-constraint to find the 3D 

models’ relationship corresponding to the latent variables. Furthermore, our approach will be a challenge in the 

architecture of generating 3D models built on InFoGAN. Finally, in the process of generation, we might 

discover the contribution of the latent variables influencing the 3D models to the whole network. 
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INTRODUCTION 

 

Image-based 3D reconstruction technology involves many popular fields, such as 

computer image processing, computer graphics(Li, R., et al. 2011), computer 

vision(Alahari, K., et al. 2013), and computer-aided design. At present, image-based 3D 

reconstruction technology has become a hot field with great potential and applied in 

many aspects(Sra, M., et al. 2016 ), such as e-commerce, space flight, remote sensing 

surveying and mapping, virtual museums(Aoki, H., et al. 2008), and other high-tech 

fields. Before the rise of deep neural networks, our more mature methods for 3D 

reconstruction of objects or scenes include single image reconstruction using the 

principle of geometric projection, 3D reconstruction using binocular stereo vision, and 

3D reconstruction based on depth images. Although these methods have achieved good 

reconstruction results in certain aspects (Aditya, T. S. 2010), they still have 

disadvantages such as a  high amount of calculation, poor reconstruction effect, high 

price, and low degree of automation(Sinha, A., et al. 2016). 

 

Nowadays, the high development of deep learning enables many researchers to 

carry out reconstruction experiments from 2D images or 3D models(Sinha, A., et al. 

2016)( Gao, L., et al. 2019). Image-based 3D reconstruction technology has the 

advantages of fast, simple, and realistic and can better realize the virtualization of 

objects. At present, most researchers dedicated to improving the accuracy and details of 
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3D model reconstruction(Chen, Z., et al. 2019). The main problem of this technology is 

how to recover three-dimensional information based on disturbed or incomplete two-

dimensional information, which is also the main problem of computer vision. As we 

know, accuracy and details are significant for the reconstruction of 3D models. However, 

in the process of 3D model reconstruction, whether the latent variables corresponding to 

the characteristic semantics can be found from the latent space to explain the generation 

of 3D objects may increase the convenience of 3D model reconstruction. In-depth 

research on image-based reconstruction, technology can promote the understanding and 

research of 3D reconstruction and promote the development of related disciplines(Chen, 

Z., et al. 2019). 

 

The goal of this research is to apply deep learning to reconstruct the 3-dimensional 

models from the probabilistic latent space with 3D chairs multi-view images datasets and find 

out the corresponding controllable features that can represent the 3-dimensional model by 

seeking the potential representations in the 3-dimensional space. To achieve this goal, we 

started by solving there following two questions: 

1. How to reconstruct the 3D chair models from multi-view images? 

2. How to manipulate the models to find effective latent variables? 

 

Our main idea is to transform such multi-view 3D chair images with different rotation 

and width to 3-dimensional models from the probabilistic latent space as shown in Figure 1. 

 

 
 

FIGURE 1. Multi-View 3D Chair Images 

 

RELATED WORKS 

 
3D RECONSTRUCTION 

 

Three-dimensional reconstruction is a reverse process of three-dimensional object or 

scene image description, which can restore a three-dimensional object or scene from 

two- dimensional image(Malik, A., et al. 2020). Image-based 3D reconstruction is a 

method to extract the 3D depth information from several scenes and object images and 

reconstruct the 3D model of the object or scenes with a strong sense of reality according 

to the obtained 3D depth information.  With the latest development of artificial 

intelligence and computer hardware, deep learning method increasingly used in the 3D 

model reconstruction. In 3D object reconstruction, we can use voxel grids (Girdhar, R., et 

al. 2016)( Liao, Y., et al. 2018), octrees (Tatarchenko, M., et al. 2017), point cloud (Gadelha, 

M., et al. 2018)( Wang, L., et al. 2020), and other forms (Henderson, P., et al. 2020)to 
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represent the 3D shape representation of deep learning shapes. Girdhar et al.(Girdhar, R., 

et al. 2016)propose an embedding space that can predict voxel from 2D images and 

retrieve 3D models. Wu et al. (Wu, J., et al. 2016) extended GANs from images to voxels 

and generate three-dimensional objects represented by voxels in a three-dimensional 

probabilistic space. 
 

Although there are currently many different deep learning models and 3D model 

representations are used in 3D model reconstruction tasks. But most of them focused on 

the accuracy and smoothness of the generated model shape, without an in-depth 

discussion on the impact of latent code on the generative deep model during the 3D 

model generation process. 

 
GANs 

 

Goodfellow et al. proposed Generative Adversarial Networks (GANs), a framework for 

estimating deep generative models via minimax games. It learns a generative model G 

(Generator) that captures the data distribution and trains the G by playing against a 

discriminative model D (Discriminator) that estimates the probability that a sample came 

from the training data(Goodfellow ,et al. 2016). 

 

Generative Adversarial Networks (GANs) (Goodfellow ,et al. 2016) is one of the 

most promising deep models for unsupervised learning in complex distribution by 

mapping from a latent distribution to the real data via adversarial learning between a 

generative model and a discriminative model(Radford, A., et al. 2015). After learning 

such a non-linear mapping, GAN can produce photo-realistic images from randomly 

sampled latent variables(Brock, A., et al. 2018). 

 
However, to control the image generation, it is necessary to understand the 

randomly sampled latent variables corresponding to which features. For example, images 

of handwritten characters are defined by many properties such as character type, 

orientation, width, curvature, and so on. Because the GANs uses a simple continuous 

input noise vector, and there are no restrictions on how the Generator can use this noise. 

Therefore, the noise may be used by the Generator in a highly entangled way, resulting 

in the single dimension of the noise vector does not correspond to the semantic features 

of the data (Brock, A., et al. 2018). 
 

INFOGANS 

 

Information Maximizing Generative Adversarial Networks (InfoGANs) have recently 

shown to learn the understanding of latent variables (Brock, A., et al. 2018). Chen et al. 

(Chen, X., et al. 2016) proposed a generative adversarial network called InFoGANs 

which can maximize the mutual information between a small subset of the latent 

variables and the observation. InFoGANs is an information-theoretic extension to the 

generative adversarial network that can learn disentangled representations in a 

completely unsupervised manner. InFoGANs fixes a part of the latent vectors and 

divides them into categorical codes and continuous codes. Categorical codes (each 

categorical code contains N discrete codes) can model discrete variation in data, and 

continuous codes can capture continuous variations. 
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METHODOLOGY 

 
PROPOSED METHOD 

Figure 2 shows an overview of our research design and methodology. In this chapter, we 

introduce our necessary equipment and model for 3D object generation. The first is the 

mapping from 3D chair multi-view images to the 3-dimensional space. Then, we discuss 

how to construct the framework of the 3D model generative adversarial network by using 

volume convolution network and the recent advance of generative countermeasure 

network. 

 
 

FIGURE 2. Overview Of Method 
 

 
REFERENCE ARCHITECTURE 

 
INPUT 

 

InFoGANs modelled the latent codes with three categorical codes (each categorical code 

contains ten discrete codes), which can model discrete variation in data, and two continuous 

codes that can capture continuous variations. Compare with the InFoGANs, the same datasets 

and same parameters setting were used in this research, as shown in Figure3. 

 

FIGURE 3. Original Parameters 
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1. Num_z means Noise variables; 

2. Num_dis_c means Number of discrete latent codes; 

3. Dis_c_dim means Dimension of each discrete codes; 

4. Num_con_c means Number of continuous latent codes. 

 

For the comparison with InFoGANs, the same datasets and same parameters 

setting were used in this research. 

 

GENERATOR 

 

Generator G, mapping a randomly sampled 200-dimensional vector noise z with latent c 

vector from the probability latent space to a 64*64*64 cube that represents the object G (z, c) 

in 3D voxel space. The Generator consists of the five 3-dimensional volumetric convolutional 

layers with batch normalization and four middle ReLU layers added along with a final 

Sigmoid layer. 

 
DISCRIMINATOR 

 

Following Chen et al. (Chen, X., et al. 2016)  the whole Discriminator D is composed of 

‘discriminator’ and D function, i.e., Discriminator = ' discriminator ' + D_Function. The 

part of ‘discriminator’ just has feature extraction and sharing function, the last layer of 

discrimination is in the D_function, so the combination of the two is the complete 

Discriminator. 

 

The extracted features of the ‘discriminator’ input the D function, and the output 

of the D function shows whether the 3D objects input the Discriminator D is real or not. 

We experimented and found that the running time of four volumetric convolutional 

layers is faster than the running time of the original five convolutional layers in the 

’discriminator’ part. Although it lost a little bit of detailed feature extraction, it did not 

affect the final results. The ‘discriminator’ constitutes almost the same as the Generator, 

except for the number of layers and Leaky ReLU layers instead of ReLU layers, as 

shown in Figure 4. 

 

 
 

FIGURE 4. Architecture Of Discriminator 
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Q_FUNCTION 

 

Q_function shares all volumetric convolutional layers in the discriminator with the D 

function. In the Q function, we use the natural choice of softmax nonlinearity to represent the 

distribution of categorical latent codes in Q and use Gaussian distribution to represent the 

distribution of continuous in Q. We add the loss of Q function to the Generative nets, aim to 

emphasize the distribution of discrete and continuous codes in the generating which usually 

be neglected in the traditional GANs(Chen, X., et al. 2016). 

 
LOSS FUNCTION 

 

The responsibility of the Discriminator is to distinguish between true or fake. Therefore, 

the loss function set of the Discriminator consists of  the Loss_real function and the 

Loss_fake function. The specific functions of these two loss functions are as below: 

Loss_real function: The discriminator identifies the probability that the real data 

matches the real labels. 

Loss_fake function: The discriminator identifies the probability that the fake data 

matches the fake labels. 

On account of the mutual information between the G (z, c) and latent codes c. The 

loss functions of the Generator are more than the original function set. There is not only 

gen_loss function but also categorical codes and continuous codes corresponding to dis 

_loss function and con_loss function.  The specific functions of these two loss functions 

are shown below: 

Gen_real function: The discriminator identifies the probability that the fake data 

matches the real labels. 

Dis_real function: BEHIND THE ORIGINAL NOISE PLUS whole discrete code 

which is present in ONE-HOT CODE. 

Con_real function: Combine the Crossentropy Loss and BCE Loss. 

 
SHAPE-LIMIT LOSS 

Below shows a formula for the Shape-limit loss function(𝑦𝑖: i-th target distribution,𝑥𝑖: i-
th feature distribution). The purpose of the loss function is to control the discrete points 

in the synthetic fake 3D models generated in a similar shape to real data. We begin with 

the distribution of fake models and real data, adjusting the similarity of the distribution. 

And we add this function to the whole Generator Loss function set by reducing the total 

value of the function set to achieve the goal we want. 

 

𝑆𝐻𝐴𝑃𝐸 − 𝐿𝐼𝑀𝐼𝑇 𝐿𝑂𝑆𝑆 = 𝜆1 ∗ (𝑦𝑖 ∗ 𝑙𝑜𝑔𝑦𝑖−𝑥𝑖) + 𝜆2 ∗ (𝑦𝑖 − 𝑥𝑖)
2. 

 

Figure 5 shows the diagram of the formula’s left part, when the difference of 

target and feature from 0 to 1, the result is a negative value, and the closer the difference 

is to 0, the closer the result is nearly negative infinity. Even if a positive function is 

added to this part, such as the right part of the formula, it will not affect the interpolation 

between the target and feature (between 0 and 1). However, to prevent the gradient 

explosion caused by the total value of the loss function falling too fast, we set two hyper-

parameters λ1and λ2to  adjust the balance of generation. 
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FIGURE 5. The Diagram of  Formula’s Left Part 

 

 

Figure 6 shows the downtrend of Shape-limit loss, which means the loss assists the 

decrease of the Generator's loss function during the generation process, and at the same time 

according to the results of synthetic models with Shape-limit loss or without Shape-limit loss 

(shown in chapter 4), provided our Shape-limit loss worked well. 
 

 
 

FIGURE 6. Shape-lomit Loss  

 

SOFT LABEL 

Labels are very commonly used in machine learning. They divided into two types: a soft 

label and a hard label. In this subsection, we will introduce the identity of the label. Also, 

we will explain the difference between the hard label and soft label. 

 

For example (Zhou, Z. H. 2016), if you receive a melon, how to judge that it is a 

good melon? For humans, based on previous experience, we will first extract some 

useful information from the specific thing of melon, such as the colour of a melon, the 

shape of the melon, the sound of percussion, and so on. Then use certain rules from this 

information to judge. We think melons with a greenish-green colour, curled-up roots, 

and turbid sounds are good melons under normal circumstances. 

 

In the above example, “good melon” and “bad melon”, these two judgments are 

labels (Zhou, Z. H. 2016). 
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Hard label: The value of the hard label always show 0 or 1. 

Soft label: Obviously, the value of soft coding is more flexible, such as 0.4, 0.4, 1.2, 

and so forth. 

 

For this model, Generator and discriminator can advance in a smooth process.  
 

EXPERIMENT AND EVALUATION 
 

SOFT LABEL 

We manually set the real_label and fake_label in the model of Discriminator and the 

setting of real_label is (0.7, 1.2), fake_lable is (0, 0.3). Figure 7 shows the loss expression 

in the case of no soft label, but with the Shape-limit loss function, there are very large ups 

and downs in the early stage during the training, which means that the training process is not 

smooth greatly reduces the efficiency of training. Figure 8 shows the loss expression in the 

case of both Shape-limit loss and soft label. Under the effect of soft labels, their training 

proceeded smoothly without major fluctuations. 

FIGURE 7. No Soft Label                                                                         FIGURE 8. With Soft Label 

 

SHAPE-LIMIT LOSS 

We compared different results of three cases, with soft label but no Shape-limit loss, 

with both Shape-limit loss and soft label, no soft label but with Shape-limit loss. The 

results of Figure 11 are contrasted with the results of Figure 9 and Figure 10, which 

reflect the success of Shape-limit loss. Without Shape-limit loss, even if soft labels are 

added and the training is stable, the 3D synthetic model cannot be obtained 
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FIGURE 9. No Soft Label But With Shape-limit Loss 

 

 

FIGURE 10. With Soft Label And Shape-limit Loss 

 

FIGURE 11. With Soft Label But Without Shape-limit Loss 

 

EVALUATION 

In our evaluation, we evaluate not only the model visually but also quantitatively. Most 

methods for evaluating the shape of the reconstructed model based on measuring the 

distance between the target point and the generated point. In this experiment, we used 

two of these methods the average distance between generated voxels and target voxels, 
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and the MSE (mean squared error) methods to assess the reconstruction errors of our 

deep model. To have the value of reference and comparison, we compared the values of 

CNN-GANs and IM-GANs with the same methods, which shown in Table 1. We also 

utilized the AP (average precision) method to evaluate the voxel prediction in our model 

and compared it with 3D-GAN, which shown in Table 2. All of them are model 

reconstruction experiments based on highly comparable voxel units. 

 
TABLE 1. 3D Reconstruction Errors 

 

 A1 

3DInFoGANs-average 34.3 

CNN64-average 7.34 

IM64-GANs-average 8.96 

3DInFoGANs-MSE 29.9 

CNN64-MSE 7.76 

IM64-GANs-MSE 11.43 

 

 
TABLE 2. Average Precision For Voxel Prediction 

 

 A1 

3DInFoGANs-AP 20.1 

3DGAN-AP 47.2 

 

The models shown in the above tables all use 64 sampling resolutions, the 

obtained MSE and average results are multiplied by 1000, and the better performance 

results have marked in bold. It is clear from Table 1 and Table 2 that our reconstruction 

error and voxel prediction inaccuracy are high. It can be known from experiments and 

tests that in addition to the model construction still needs improvement, the convergence 

of the discrete latent codes still needs to be further increased. Although we have 

completed the purpose of this research, through evaluation, it still needs to be deepened. 

 

 In addition to evaluating reconstruction errors, we also evaluate the accuracy of 

model generation. It is obvious from the visual angle that the accuracy of our generated 

model is not as good as CNN-GAN and IM-GAN. The result of voxel prediction proves 

from the data that the accuracy of our generated model is very low. Therefore, the next 

goal of this research is to reduce reconstruction errors and improve the accuracy of 

model generation. 
 

EXPERIMENT AND TEST FOR LATENT CODES 

The purpose of this experiment is to obtain a 3D synthetic model successfully. This model is 

expected to achieve our experimental goal, apply deep learning to reconstruct the 3-

dimensional models from the probability latent space, and discover the latent codes in the 3-

dimensional space corresponding controllable features. 
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MODEL OPTIMIZATION 

 

The hidden layer in deep learning is equivalent to the linear combination of input features, 

and the weight between the hidden and input layers is equivalent to the weight of input 

features in the linear combination. Moreover, the learning ability of the deep model will 

increase exponentially with the increase of depth. 

 

We experimented with model optimization without the influence of the latent codes 

and set initial input parameters. There are five layers in the original InFoGANs discriminator 

net because of the unique architecture of InFoGANs’ Discriminator. The features extracted 

from the five layers need to share in the D_function and Q_function. The deeper the model, 

the finer the extracted features. Due to it took too much time to run, we still tried to reduce 

one layer to run the different layers experiment and compare the run time results. 

 

After the experiments, we get a similar result of 3D synthetic models in the case of 5 

share layers and 4 share layers. Both can successfully generate 3D objects in chair shapes. 

However, in the case of 4 share layers, running 100 epochs took 1 minute at most. The 

opposite of, in the case of 5 share layers, running 100 epochs took 1 minute at least because 

of the time cost compared to when both cases can generate 3D synthetic models. We 

naturally choose the four share layers. 

 
PARAMETERS 

In this experiment, we want to find which parameters influence the generating of 3D 

synthetic models. From the results with the initial parameters, we have known it can 

successfully synthetic 3D models without fixed latent codes. We just design three style 

experiments for continuous codes and discrete codes. 
 

 

FIGURE 12. Only With Continuous Codes 

 



106 

 

 

FIGURE 13. Only With Discrete Codes 

From Figure 11 and Figure 12, we can find there is no way to converge the discrete 

points in the generation of the 3d composite model, resulting in discrete points scattered 

outside the shape. Of course, although the results of the discrete points are very different 

from the original results, this does not mean that the discrete codes have a great influence on 

the generation of the 3D synthetic model, which still requires us to conduct a final test. 

 

 
 

FIGURE 13. With 10 Discrete Codes and 2 Continuous Codes. 

 

 
 

FIGURE 14. With 30 Discrete Codes and 2 Continuous Codes. 
 

Only from the experimental results of fixing discrete codes and continuous codes 

individually, when only the continuous codes are fixed, the expected results can be 

obtained. On the contrary, when only the discrete codes are fixed, the current model 
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cannot converge to the discrete points very well, and the shape of the 3D synthetic model 

cannot be clearly seen. From the experimental results of fixing the discrete and 

continuous codes at the same time(Figure 13 and Figure 14), although discrete points 

still cannot converge well, and the shape of the 3D synthetic model cannot be clearly 

seen. With the increase of discrete codes, the result is as bad as the experimental result of 

fixed discrete codes alone. However, from the experimental results, we can roughly 

judge, the continuous codes correspond to the shape semantic features of the 3D 

synthetic model, and the discrete codes correspond to the detailed semantic features of 

the 3D synthetic model. Specific judgments still need to be tested before we can get 

them. 

 
TEST 

 

The purpose of our research is not only to reconstruct the 3D model but also to find the 

corresponding semantic features of latent codes in the latent space. To achieve this goal, 

we selected a certain type of 3D synthetic model with clear multi-tenant results to find 

the corresponding semantic features. Below (Figure 15, Figure 16 and Figure 17)we 

select the test of a set of results to illustrate: 

 
 

FIGURE 15. Original 

 

 

 

FIGURE 16. Change The Continuous Codes 
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FIGURE 17. Change The Discrete Codes 

 

Figure 15 is the original results set. Figure 17 shows the results set by changing 

the discrete codes. Figure 16 shows the results set by changing the continuous codes. 

From the test, we found the change of the continuous codes has an affect on the shape 

generating process. Through the change of the discrete codes, we found that, as discussed 

before, the discrete codes have a certain influence on the details of the 3D synthesized 

model. However, due to the limitations of the current model, we can only roughly test the 

impact of latent codes, and not find out the corresponding semantic features in 3-

dimensional space. 

 

CONCLUSION 

In this article, we proposed a 3D model reconstruction method based on the deep model and 

converted the original 2-dimensional neural network to a 3-dimensional neural network for 

generating 3D objects. we added a shape-restricted loss function to the basic generation 

network and achieved the effect of converging discrete points by controlling the distribution 

of the discrete points of the synthesized 3D object to be close to the distribution of the target 

actual object. Based on this method by modifying the value of the fixed latent code in the 

latent space to obtain the change of the generated 3D model, which proves that the latent 

codes influence the generation process. This research laid the foundation for the next step of 

the research on the inverse mapping in the 3-dimensional space of the GAN model. We hope 

that further research on GAN inverse mapping can improve not only the generation efficiency 

of the 3D model but also the controllability of the generation.  
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