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ABSTRACT

The large amount of rice straw production in Southeast Asia presents both challenges and opportunities for
sustainable environmental management. Improper rice straw management poses significant environmental
challenges, prompting interest in utilizing it for bioenergy production as a sustainable solution. However, a
comprehensive understanding of the environmental implications throughout the entire lifecycle of rice straw
utilization is poorly understood. A comprehensive approach of life cycle assessment (LCA) could provide valuable
information concerning the environmental impact of rice straw utilisation for bioenergy. Therefore, this study attempts
to provide a brief overview of the LCA of rice straw utilisation as a source of bioenergy in Southeast Asia. Several
search engines and databases, including Springer, Web of Science, and Scopus, were used to select the articles for
this review. These searching strategies involve three main processes: identification, screening, and eligibility.
Following those process, a total of 13 articles were included in this review. The findings indicated that
biochemical conversion pathways for producing bioethanol and biogas yield the greatest environmental benefits
notably through greenhouse gas emissions reduction. This highlights the potential of rice straw bioenergy as a
promising avenue for mitigating the impacts of climate change by curbing GHG emissions. In summary, this
research underscores the significance of comprehending the holistic environmental implications of rice straw
utilization for bioenergy, emphasizing the potential of specific conversion pathways to contribute to sustainable
rice straw management and climate change mitigation in Southeast Asia, encouraging further research in this field for
practice refinement and widespread adoption.
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INTRODUCTION

The Southeast Asian population heavily relies on rice, a
staple food that plays a crucial role in achieving Sustainable
Development Goal 2 (Zero Hunger). Globally, rice
production reached approximately 787.3 million tonnes in
2021, with Asia dominating this industry. Although China
and India are known for their largest rice production, it is
important to recognize that Southeast Asia, with countries
like Indonesia, Vietnam, Thailand, and Myanmar, also
holds a significant position as leading rice producers within
the Asian region. In 2021, Southeast Asia collectively
produced around 194.5 million tonnes of rice, accounting
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for 25% of the world’s production. Southeast Asia’s rice
production not only ensures regional food security but also
plays an integral role in sustaining the global rice supply
chain, representing 40% of global rice exports (Yuan et al.
2022). This highlights its significance in the global rice
industry. Figure 1 provides an overview of rice production
distribution among Southeast Asian countries as of 2021.
According to the Food and Agriculture Organization (FAO)
reports, Indonesia leads rice production in Southeast Asia,
producing 54.4 million tonnes annually. Vietnam follows
as the second-largest producer with 43.9 million tonnes,
and Thailand ranks third with 33.6 million tonnes (FAO
2023).
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FIGURE 1. Rice producing countries in Southeast Asia (2021)

The production of rice is expected to increase
significantly in the near future to meet the demands of the
growing population. This rising demand for rice has
resulted in a noticeable upsurge in the production of rice
straw (Rajamoorthy et al. 2015), considering the production
ratio of rice grain to straw typically at 1:1.5 (Singh & Brar
2021). Rice straw, a byproduct of rice cultivation, holds
significant value due to its versatile applications in
agriculture, including soil improvement, animal bedding,
fodder, and even mushroom cultivation. It also plays a role
in energy production (heat, electricity, syngas, biofuel) and
contributes to the production of industrial products like
silica and bioplastics (Mofijur et al. 2019). However, due
to time constraints and cost considerations, many farmers
still resort to open burning for disposing of rice straw and
preparing the land for the next cultivation (Shaha & Valaki
2022). Unfortunately, this practice has negative
environmental consequences associated with the emission

of greenhouse gases (GHGs) and fine particulate matter.
Hence, developing a more sustainable rice straw
management practice is essential for combating global
environmental issues.

The positive potential of rice straw as a source of
renewable energy has received increasing attention (Shaha
& Valaki 2023), particularly in its conversion into
biomethane gas, a promising substitute for natural gas. In
accordance with the long-term plans established by
governments across Southeast Asia, for more secure and
sustainable energy production, including the attainment of
net-zero emissions and carbon neutrality targets, there is
an imperative need to shift towards renewable energy
sources such as biomass. This transition not only addresses
the rising energy demand while contributing to these targets
but also serves as a means to reduce greenhouse gas
emissions and enhance energy security (Abdul Razak et
al. 2021).



Despite the great potential of rice straw for bioenergy
production, the full cycle of its production and process
poses several environmental pollutions, which is not
entirely understood. Therefore, by employing a life cycle
assessment (LCA) approach, it is possible to provide a
comprehensive understanding of the environmental
impacts of rice straw usage for bioenergy and to ensure the
sustainability of the environment. This method is frequently
used as a tool in environmental management for addressing
all the possible impacts of a product or service over the
course of its entire life cycle (Soam et al. 2017; Hanafiah
et al. 2022; Rashid et al. 2023). Researchers involved in
LCA studies have utilized a variety of software tools to aid
in their assessments, including SimaPro, OpenLCA, Aspen
Plus, and others. Performing this evaluation is extremely
beneficial, since it allows for the improvement of each
process involved (Abu et al. 2023; Kaita & Harun 2023).
In general, LCA assessment involves four phases (refer
figure 2). In the first phase, the goals and scope of the
research are defined, along with the boundary of the system
and the functional unit of the study. The second phase is a
life-cycle inventory (LCI), which involves the detailed
tracking of all flows in and out of the product system,
including raw materials used, energy consumption, water
consumption, and emissions to air, water, and
land. Life Cycle Impact Assessment before
the 'analysis' (LCIA), involves providing indicators
for interpreting the inventory data in terms of
contributions to  different  impact categories,
such as global warming potential (GWP),
human  toxicity, eutrophication and so forth. Lastly,
the interpretation phase involves discussing the
results of the LCI and LCIA as well as drawing
conclusions and making recommendations (Jolliet et
al. 2015).
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FIGURE 2. General phases of Life Cycle Assessment
(based on ISO 14040)
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Interpretation

Apparently, the utilisation of rice straw for bioenergy
production is fully in line with the current attractiveness
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of research. Indeed, according to the years since the
discovery of this “waste to wealth” materials, the number
of publications related to rice straw for bioenergy resource
has steadily increased (Figure 3). For instance, Sharma et
al. conducted a study on biofuel from rice straw (Sharma
et al. 2020). Cuong et al. conducted a study on renewable
energy from biomass surplus resource: potential of power
generation from rice straw in Vietnam (Cuong et al. 2021)
while Liu et al. conducted a study on energy from
combustion of rice straw: status and challenges to China
(Liu et al. 2011).
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FIGURE 3. Number of publications from 2012 to 2021 on
the topic of rice straw and bioenergy production from Web of
Science

METHODOLOGY

The purpose of this review is to provide a brief overview
of the potential of rice straw for bioenergy production using
the LCA approach based on research conducted in
Southeast Asia. Several search engines and databases such
as Springer, Web of Science, and Scopus were used in the
search process, as they provide advanced searching
functions, comprehensiveness, quality control of the
articles, and a multidisciplinary focus. During the search,
different branches and names of rice straw were
considered, including paddy straw, biomass, organic
waste, and agricultural Additionally,
keywords such as bioenergy, biofuel, energy
potential, and life cycle assessment were also
included. In the next step, all articles were screened by
selecting the criteria for article selection, which is done
automatically based on the database’s sorting function.

waste.

Only articles published in English language
included in the review to avoid
misunderstanding.  Furthermore, the period of

publication that was chosen is between 2012 to 2022, as
this timeline was deemed to be an adequate period to
observe the trend of the research
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topic. Besides, this study considering only studies
published in scientific indexed journals. This process
excluded 252 articles because they did not meet the
following criteria. Hence, a total of 112 articles were
subjected to the eligibility process, which is conducted
manually by reading the abstract of the articles. Out of
these studies, only about 36% have been conducted in the
Southeast Asia region. The primary focus of research on
rice residue management has been on the southern and
eastern Asian regions, primarily due to the significant
volume of rice waste produced in these areas. Surprisingly,
there has been limited research conducted in Southeast
Asia, despite the region’s crucial role in the rice industry.
Therefore, this review aims to address the knowledge gap
within Southeast Asia and provide a brief overview of rice
straw’s potential for use in bioenergy, using the LCA
approach based on research conducted in the region.
Articles that meet the criteria, such as study location in
Southeast Asia, using the LCA approach, and using rice
straw to produce bioenergy, are selected to be included in
this study. Therefore, only 13 articles were included in this
review, with 99 articles excluded primarily due to not
meeting the specified criteria. The LCA of rice production
is also included in this study. The inclusion of LCA for rice
production in this study serves the purpose of assessing
resource efficiency and emissions, facilitating the
identification of strategies to reduce inputs and enhance

resource management practices. This assessment is
particularly important for promoting sustainable and
responsible bioenergy practices, as rice straw utilization
for bioenergy production is not solely about the straw itself
but also the inputs required during cultivation.

RESULTS AND DISCUSSION

The data presented in Table 1 provides an overview of
studies conducted in Southeast Asia regarding the rice
production and the utilization of rice straw for bioenergy
production based on (LCA). Most of the studies were
conducted in Thailand (7 studies) (Mungkung et al.
2020; Ramsden, Wilson & Phrommarat 2017,
Rathnayake et al. 2018; Silalertruksa et al. 2013;
Silalertruksa & Gheewala 2013; Thanawong, Perret &
Basset-Mens 2014; Yodkhum, Gheewala & Sampattagul
2017), representing about half of the reviewed papers. The
earliest article published on the LCA of rice straw
utilization for bioenergy was also from Thailand in 2013,
indicating early investigation of the environmental impacts
of rice straw in this region (Silalertruksa et al. 2013;
Silalertruksa & Gheewala 2013).
Typically, rice straw case studies involve a cradle-to-gate
system boundaries approach, which considers the raw

material acquisition, manufacturing, and processing stages.
However, the disposal stage and the potential toxicity of
the product associated with the emission of rice straw
during its life cycle are often overlooked. This can be
represented by the fact that among the 13 studies reviewed,
11 studies considered system boundaries from cradle to
gate (Abdul Rahman et al. 2019; Harun, Hanafiah & Aziz
2021; Mungkung et al. 2020; Ramsden, Wilson &
Phrommarat 2017; Rathnayake et al. 2018; Shafie, Masjuki
& Mahlia 2014; Silalertruksa et al. 2013; Thanawong,
Perret & Basset-Mens 2014; Yodkhum et al. 2017) whereas
only two assessed the entire life cycle of rice straw from
cradle-to-grave (Shafie et al. 2013; Silalertruksa &
Gheewala 2013).

The majority of the reviewed studies assessed the
environmental performance of rice straw up to the midpoint
level, which includes eutrophication, acidification, toxicity,
fossil fuel depletion potential, and water footprint (Harun,
Hanafiah & Aziz 2021; Mungkung et al. 2020; Ramsden,
Wilson & Phrommarat 2017; Rathnayake et al. 2018; Shafie
et al. 2013; 2014; Thanawong et al. 2014). Only one
reviewed study extended the assessment of environment
impacts to the endpoint level (Yusoff et al. 2015). Among
the various impact categories evaluated in these studies,
global warming potential (GWP) emerges as the most
extensively examined category. It is important to emphasize
the specific significance of GWP in the context of rice
cultivation, especially in flooded paddy fields, as they
represent a significant source of methane emissions, a
highly potent greenhouse gas (Shafie et al. 2014). This is
further supported by research conducted by Rathnayake et
al. Silalertruksa & Gheewala, Yodkhum et al. and Abdul
Rahman et al., all of which reported similar findings (Abdul
Rahman et al. 2019; Rathnayake et al. 2018; Silalertruksa
& Gheewala 2013; Yodkhum, Gheewala & Sampattagul
2017). Notably, during rice straw cultivation, methane is
produced under anaerobic conditions in flooded paddy rice
fields (Rathnayake et al. 2018), contributes approximately
80% of global greenhouse gas emissions (Yodkhum,
Gheewala & Sampattagul 2017). The management of water
in rice fields is therefore important for not only reducing
methane emissions but also for increasing rice yield and
preventing weed growth. Additionally, a good agricultural
practice (GAP) suggests maintaining the water level at
5-10 cm from the soil surface to prevent weed growth
during the tillering stage of seeds (i.e., approximately 20-
30 days after seed germination). Also, it is recommended
that the water from the field be drained off 20 days after
the flowering date or 10 days before harvesting (Silalertruksa
& Gheewala 2013). Given methane’s significantly higher
heat-trapping capability per molecule compared to carbon
dioxide, its role in flooded rice paddy fields during rice
straw cultivation is of utmost importance in the broader
context of climate change mitigation.
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According to Silalertruksa & Gheewala, among the
possible rice straw utilization systems for producing
bioenergy, it is found that a biochemical conversion yields
the highest environmental benefits, especially with regard
to greenhouse gas emissions and resource depletion
compared to thermochemical pathway (Silalertruksa &
Gheewala 2013). The findings reveal that for every ton of
dry rice straw, rice straw-derived bioethanol demonstrates
the most significant net reduction in global warming
potential, achieving a reduction of 283 kg CO, equivalent.
This is followed by rice straw bio-Dimethyl ether (bio-
DME) and electricity, which yield net GWP reductions of
approximately 245 and 116 kg CO, equivalent, respectively.
Similarly, in the context of abiotic resource depletion,
mirroring the trends observed in global warming potential,
rice straw-based bioethanol emerges as the most effective,
resulting in the highest net reduction of abiotic resource
depletion, specifically reducing around 3.1 kg Sb equivalent
per ton of dry rice straw. This is followed by the rice straw-
based bio-DME and electricity systems, which achieve net
abiotic resource depletion reductions of approximately 2.7
and 1.3 kg Sb equivalent per ton of dry rice straw,
respectively. A study conducted by Silalertruksa et al.,
(2013) reported that, by using rice straw bio-DME for
diesel engines, GHG emissions could be reduced by 12-60
g CO, eq/MJ or 14-70% as compared to existing diesel
fuel used for transportation. Meanwhile, the use of rice
straw bio-DME as an LPG supplement for household
applications would result in a GHG emission reduction of
about 1-49 g CO,-eq/MJ or 2-66% when compared with
the use of Liquefied Petroleum Gas (LPG) at the same
performance (Silalertruksa et al. 2013). Additionally,
despite the direct combustion of rice straw for electricity
resulting in several environmental benefits, the net benefits
of this pathway were marginally lower than those of the
bioethanol and bio-DME pathways (Silalertruksa &
Gheewala 2013). Overall, bioenergy production from rice
straw has been found to have fewer adverse environmental
impacts than energy production from fossil fuels.

As aforementioned, LCA provides an understanding
of potential environmental problems and ensures the
environmental sustainability of rice straw as a bioenergy
source throughout its entire life cycle (Soam et al. 2017).
Thus, a comprehensive tool such as LCA can greatly benefit
any scientific study intended to enhance the environmental
performance of a system. However, based on the results
of this study, several knowledge gaps currently exist in
LCA studies on the utilization of rice straw for bioenergy.

Detailed recommendations are provided in Table 2 for
future researchers to improve consistency, transparency,
and completeness of the research. There is a need to
conduct a more comprehensive LCA studies of rice straw
for bioenergy production, from raw material collection to

bioenergy application, with special focus on the
transportation, storage, and processing of rice straw.
The identification ofthe most appropriate
technologies or waste-to-energy conversion can
benefit both the environment and bioenergy
production. The hazardous gases released during waste-
to-bioenergy processes should be taken into
consideration. Hence, a comparative study of the
conversion technology waste-to-energy is crucial to
determine the most effective and environmentally friendly
technology. Besides, further research is suggested

to combine both material flow analysis (MFA) and
LCA approaches to address the inadequacy of data on
LCL. In this regard, the MFA approach will outline all the
possible inputs and outputs of each process involved in
which the outcomes may be used in the LCI.

CONCLUSION

After thoroughly reviewing the literature, rice straw
offers promising opportunities for bioenergy
production to replace fossil fuels due to its vast
availability and life cycle GHG emission benefits. In
addition to its attractive lignocellulosic material, rice
straw is ideal for producing both liquid and gaseous fuel
oils, particularly bioethanol, due to the high amount of
cellulose and hemicellulose content that can be readily
hydrolyzed into fermentable sugars. Furthermore, the
biochemical conversion pathway for producing biogas
and bioethanol yields the highest environmental
benefits, particularly pertaining to GHG emissions and
resource depletion. Besides, rice straw also has high
potential for producing bio- DME to substitute fossil
fuels such as LPG and diesel. Compared to diesel fuel
used for transportation, rice straw bio-DME could
reduce greenhouse gas emissions by approximately 14—
70% meanwhile, when used as an LPG supplement for
household applications, it can result in a reduction
of approximately 2—-66% in GHG emissions compared to
LPG at the same performance.

Therefore, removing the straw from rice fields can
significantly tackle global environmental issues such as
climate change and scarcity of resources. The information
presented can also serve as a guideline to improve rice
straw management practices in order to achieve
environmental sustainability in the agriculture sector.
Even so, further LCA discussions on rice straw
utilization for bioenergy are still required to gather more
information, so that more initiatives and mitigations can
be developed and proposed. These discussions should
delve into specific aspects such as the optimization of
conversion processes, logistical challenges, and
comparative study of the conversion technology
waste-to-energy. Given the limited
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TABLE 2 Limitations and recommendations for LCA practitioners in the rice straw field

No Limitation Uncertainties Recommendation
Uncertainties in the process of Combining MFA and LCA approach
1. Inadequate data on LCI . P g PP
inputs and outputs
5 Potential emission from Uncertainties in the outputs and Incorporate cradle-to-grave approach

final emissions

various waste management processes

Uncertainty regarding the use
of sustainable conversion
technologies

3. Insufficient primary research on
the difference conversion technologies
used for waste-to-energy

Conduct a comparative study of the
technologies used to convert rice straw
into bioenergy

number of studies conducted on rice straw’s utilization in
bioenergy production in Southeast Asia, obtaining more
detailed information through additional LCAs is required
to confirm those results. This will ultimately ensure a more
robust and sustainable transition to bioenergy derived from
rice straw.
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