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ABSTRACT

Worldwide, SARS-CoV-2 has been responsible for millions of fatalities and extensive disability. Hence, to stop 
the spread of novel viruses like SARS-CoV-2, Omicron, and other worrying types, rapid and accurate diagnostic 
techniques are needed to identify symptomatic and asymptomatic carriers as soon as feasible. Early recognition and 
diagnosis are essential to effective epidemic management. However, different viral strains’ shapes and spatial 
characteristics are similar, complicating image classification, especially in medical virology. This study uses a super-
pixels segmentation technique based on transmission electron microscopy (TEM) images to differentiate SARS-CoV-2 
from SARS-CoV. This paper aims to develop a method that enables virologists to detect and diagnose viral 
infections more accurately. In results, SARS-CoV-2 had a median area of 25,145.54 pixels and SARS-CoV of 
38,591.35 pixels. The model can help to better understand how viruses develop, spread, diagnose and contain 
outbreaks. Furthermore, an exceptionally low root mean square error (RMSE) of 0.0275 between the segmentation 
of the viral area between humans and machines is obtained. Indeed, this low error rate indicates the accuracy of 
this automated measurement technique. Finally, the developed superpixel segmentation technique provides quick 
and reliable identification of coronaviruses, promising to significantly contribute to medical virology and help 
manage epidemics by simplifying prompt viral diagnosis.

Keywords:  SARS-CoV-2, SARS-COV; artificial intelligence; superpixel segmentation; Transmission Electron 
Microscopy

INTRODUCTION

Many people have lost their jobs and businesses have had 
to cut operations due to the ongoing global Coronavirus 
Disease 2019 (COVID-19) outbreak. According to data, 
6,911,896 million people have died from contracting the 
virus and more than 694 million have been infected. The 
rapid spread of the virus negatively impacts public spaces, 
markets, schools, and airports, despite efforts to stop its 
spread. The rapid and widespread reach of the virus has 
highlighted the need for a more efficient environmental 

detection system to control its further spread and improve 
the health care of sufferers (Ai et al. 2020; Engineering 
2021; Rahman et al. 2023; Bakr Ahmed Taha et al. 2020; 
Bakr Ahmed Taha, Al Mashhadany, et al. 2021; Bakr 
Ahmed Taha, Al-Jubouri, et al. 2022; Bakr Ahmed Taha, 
Ali, et al. 2021; Bakr Ahmed Taha, Mehde, et al. 2022) 

Artificial intelligence (AI) encompasses methods that 
enable machines to imitate or exceed human intelligence, 
particularly in cognitive functions. The main branches of 
AI include machine learning, computer vision, and natural 
language processing (Joonas 2020; Mamat et al. 2023; 
Manea et al. 2023; Robertson et al. 2018; Bakr Ahmed 
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Taha, Al Mashhadany, Al-Jubouri, Haider, et al. 2023; Bakr 
Ahmed Taha, Al Mashhadany, Al-Jubouri, Rashid, et al. 
2023a).

The machine learning techniques have frequently been 
employed to segment microorganisms present in the 
environment. Machine learning can be categorized into 
traditional methods and artificial neural networks. 
Previously, algorithms such as Support Vector Machine 
(SVM), K-Nearest Neighbour (KNN), Randon Forest (RF), 
and others have been utilized to detection of viruses.

AI can potentially expedite even the most time-
consuming tasks, making it particularly valuable in 
microorganism image analysis (Abd Alkarim et al. 2023; 
Li et al. 2015; Quality 2023; Rashid et al. 2023). 

Researchers recommend using various technologies 
for virus identification, such as intelligent computer 
systems that implement deep learning algorithms to classify 
and organize microscopic images related to medical and 
food components (Fang et al. 2020; Kang et al. 2023; 
Kohler & Farr 1966; Rivenson et al. 2019; Schwartz 2020).  
Radiographs and Computed Tomography (CT) scans have 
been lauded as useful diagnostic tools in recent research 
on the diagnosis of respiratory disorders such as 
COVID-19. These methods are particularly helpful in 
determining the severity of COVID-19 infections, keeping 
tabs on the most seriously ill patients, and forecasting the 
course of the disease. 

However, in such emergencies, relying solely on 
conventional manual diagnostic procedures is often 
impractical. One such answer is provided by computer-
aided detection systems that use deep learning algorithms 
to make more accurate diagnoses in less time (Maghdid et 
al. 2021; Sahiner et al. 2019; Shi et al. 2021; Bakr A. Taha 
2021). 

Transmission Electron Microscopy (TEM) imagery is 
essential for studying significant viral replication and 
discovering new infections to create efficient plans for 
illness prevention, accurate diagnosis, control of viral 
outbreaks, and understanding the biology of pathogens and 
the causes of viral diseases (Richert-Pöggeler et al. 2019). 
Researchers have been trying to decipher viral architecture 
since the late 19th century, when it became clear that 
viruses played a significant role in disease transmission. 
The TEM image resolution is well-suited for nanoscale 
research. Therefore, it has the potential to give direct 
images of viruses for diagnostic and investigative reasons 
(Athirah et al. 2023; Mettenleiter 2017). 

Although studies show that Severe Acute Respiratory 
Syndrome Coronavirus 2 (SARS-CoV-2) is 80% similar 
to Severe Acute Respiratory Syndrome Coronavirus 
(SARS-CoV), the two envelope viruses differ in the spike 
area’s size, length, and density. These structural differences 
significantly affect the way these viruses are identified and 

diagnosed (Z. Zhu et al. 2020). In addition, coronavirus 
structures and morphologies observed in Vero cell cultures 
were determined using conventional thin-section TEMs 
with particle sizes of a median of 100 nm (Laue et al. 2021). 
Zhao et al. used TEM images to detect any differences in 
cell shape caused by SARS-CoV-2 to understand how the 
virus causes disease (Zhao et al. 2020).  

A scarcity of literature is present on the topic of 
automated virus recognition in TEM images, with a 
disproportionate number of contributions coming from a 
limited group of researchers (Gustaf Kylberg et al. 2011; 
Matuszewski & Sintorn 2018; Roingeard et al. 2019). The 
researchers presented an automatic segmentation method 
to detect different types of virus particles in TEM images. 
The process consists of analyzing the local neighborhood 
of all pixels in the image, a broader object distinction, and 
a border correction phase for extended objects (G. Kylberg 
et al. 2012). 

Image labels have been studied at the pixel level; 
however, deep learning methods have shown poor 
performance in the separation of visual objects. In 
particular, deep learning methods do not explicitly consider 
the possibility that neighboring pixels belong to the same 
category of objects in images (De Geus et al. 2019; Jha et 
al. 2020; Siam et al. 2018). Tracking Coronavirus particles 
in TEM images and calculating missed detection 
probabilities with deep recurrent neural networks Multiple 
recognize were combined to generate assignment 
probabilities. Moreover, the network calculated the 
likelihood that tracks would exist if created and destroyed 
(Spilger et al. 2020; Bakr Ahmed Taha, Al Mashhadany, 
Al-Jubouri, Rashid, et al. 2023b; Bakr Ahmed Taha, Al-
Jubouri, et al. 2023; Bakr Ahmed Taha, Mashhadany, et al. 
2022).

MORPHOLOGY MEASUREMENT

A morphology measurement method assigns numerical 
values to the geometric properties of an object in image 
processing and computer vision. The process involves 
assessing the spatial distribution of things and their relative 
sizes and shapes (Al-Kinani et al. 2020),(Yousif et al. 
2012). It can identify these patterns from photos, and data 
can be extracted using a categorized approach. Alternatively, 
it can count objects, gauge their sizes, and identify their 
shapes from images. As part of this study, the threshold 
image’s brightness and contrast were altered to reveal the 
details of the envelope and spike proteins. SARS-CoV-2 
has a diameter of between 60 and 140 nm, making it 
spherical and giving it the appearance of a solar corona 
when viewed under an TEM (Ogando et al. 2020; Ou et 
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al. 2020; N. Zhu et al. 2020). In many studies, particle sizes 
use the geometric selection tools in (Image J  software) 
such as freehand and segmented lines, to determine the 
outer viral envelope and length of spikes (Abràmoff et al. 
2004; Laue et al. 2021; Yao et al. 2020). 

With area selections, it becomes feasible to calculate 
the (max/min) diameters for virus features such as 
roundness, shape descriptors, diameter, area, and 
circularity. Subsequently, a stepwise extension in 
nanometers of the geometrical selection employed to 
identify the maximal diameter of each virus particle is 
employed to identify spikes associated with that particle. 
The accuracy of the technique was then verified using the 
adjusted scale bar tool to verify the spike length and 
diameters of various particles from various images, which 
was necessary to establish the average envelope diameters 
for both viruses. Moreover, the diameters of the virus 
particles were measured using a cross form since fixation 
artifacts in clinical specimens caused their noncircular 
shapes. Images of virus particles derived from cell cultures 

successfully mitigated the morphological variability 
resulting from fixation artifacts (Aggarwal et al. 2012). 

Virus particle areas were determined using a free-form 
selection tool in the software. It is possible to decide on 
the location, line length, angle, and point values using this 
method based on the type of selection made (T. Ferreira 
2012). Perform the analysis of particle areas by selecting 
a specific region and scanning the section until the outline 
of a virus shape is detected and repeat the process until the 
boundary of the selection allows for the extraction of the 
characteristics of the virus particles in a precise manner. 

Figure 1 shows Coronavirus particle morphology 
based on TEM images. In Figure 1(A), the SARS-CoV 
virus can be seen, while in Figure 1(B), the SARS-CoV-2 
virus can be seen with its scale bar adjusted to 100 
nanometers. A consistent scale bar allows accurate 
measurement of virus particle sizes and interpretation of 
the results based on a precise comparison between the two 
images. 

MATERIALS AND METHODS 

Super-pixels are fundamental to identifying and acquiring 
visual features representing objects in future research 
activities that must meet the following characteristics: First, 
the process must be fast enough to be used in near-real-time 

scenarios. Second, clusters should display a low level of 
intra-cluster variance while displaying a high level of inter-
cluster variance. Third, Groups should be positioned 
consistently within the imaging area. Finally, segmented 

FIGURE 1. Illustrates a measurement of virus particle size in TEM images of Vero cells infected: A. SARS-CoV and B. SARS-
CoV-2 at a Scale bar of 100 nm.
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super-pixel boundaries are defined accurately by matching 
appropriately sized borders and discrete pixels. Figure 2 
demonstrates the automated extraction process of area 
features for SARS-CoV-2 and SARS-CoV using the 

superpixel algorithm techniques. Further, emphasis is 
placed on preserving boundary information and obtaining 
localized data, which is essential for robust feature 
extraction and quantitative analysis in this work.

FIGURE 2. Flow chart of estimating the density of spike proteins and areas of SARS-CoV-2 using the superpixel segmentation
technique

DATASET COLLECTION

Dataset files accessible on the Zenodo platform are 
classified into two groups, including 519 TEM images of 
the SARS-CoV 2 virus isolated from patients in Italy at 
INMI (Colavita et al. 2020), and 248 of the SARS-CoV 
virus isolated from patients in Frankfurt, Germany (Thiel 
et al. 2003). The image specification was a resolution (1376 
x 1032) pixels, 0.64 nm, and a 16-bit TIF file. Irfan View 
software is necessary to view these images, but if you use 
ImageJ or Fiji software, Bio-format importers automatically 
apply appropriate measurements to files. 

PRE-PROCESSING 

Image enhancement plays a crucial role in the field of image 
analysis. Contrast enhancement is one of its techniques, as 
it improves image quality, tailoring it to specific needs. 
The primary objective of image enhancement revolves 
around rendering digital images more compatible with 
visual systems, achieved through actions such as smoothing 

or amplifying image details. Furthermore, this constitutes 
a notable focus within image analysis research investigations 
that have underscored the importance of histogram 
equalization (HE) as a fundamental and user-friendly 
method to increase contrast and overall image quality 
(Khan et.al 2015; Vidyasaraswathi 2020). In scientific 
imaging, spatial correlation is more significant than signal 
strength in discerning genetic materials. A low signal-to-
noise ratio (SNR) often complicates the visual identification 
process. Although histogram equalization can sometimes 
yield misleading results, it is highly advantageous for 
scientific images, such as thermal, satellite, or X-ray 
images. Additionally, the histogram’s intersection match 
value improves when one pixel matches the image color 
within the object, and there are fewer such colored pixels 
than within the image. As with normalizing histograms, 
normalizing them involves converting discrete intensity 
distributions into discrete probability distributions. 
Enhancing contrast in image histograms involves 
morphological mathematical operations, such as histogram 
normalization and equalization, which contribute to edge 
enhancement while mitigating noise.
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SIMPLE LINEAR ITERATIVE CLUSTERING 

Superpixel techniques are widely used in computer vision 
applications. They use set criteria to process all pixels 
randomly, resulting in unnecessary superpixel 
boundaries and regularity (Yuan et al. 2021). SLIC is 
better than the pixel-level approach. Due to this, the 
SLIC algorithm has been recently used to segment 
medical images (Cong et al. 2014).  Image segmentation 
can be considered a set of boundaries or segments that 
span an entire image. The colour, brightness, and 
texture can be the same for the majority of the 
segmented pixels but differ dramatically between 
adjacent segments. Segment borders and edges tend to 
be closely connected due to the considerable 
brightness shifts at the section boundaries. Therefore, a 
different segmentation technique has been developed based 
on edge extraction methods using k-means clustering and 
SLIC segmentation to group nearby pixels. Initially, the 
desired number of superpixels,  is chosen, with the aim 
of creating approximately equally sized superpixels. In an 
image with  pixels, the approximate size of each 
superpixel is  pixels. To create superpixels of 
approximately equal size, a superpixel centre is chosen at 

every grid interval as in the equation . In the 
k-means algorithm, clusters are divided based on the
proximity of data points to the cluster centroids (Ck). Data
points are assigned to the cluster whose centroid is closest
to them in terms of Euclidean distance. This assignment is 
done iteratively until convergence, with data points
potentially shifting between clusters to find the most
appropriate grouping. At the beginning of the process,
superpixel cluster centres are selected as in the equation

with  at regular grid 
intervals . Because the spatial span of each superpixel 
is approximately , it is assumed that pixels associated 
with a particular cluster centre are located on the  plane 
within a  radius around the superpixel centre. In 
contrast, there is the radius around the superpixel centre. 
This represents the search region for pixels that are closest 
to each cluster centre, and it is defined in the CIELAB 
colour space as well as the  pixel coordinates. The SLIC 
algorithm uses the CIELAB colour space because it is 
perceptually homogeneous for tiny colour differences. The 
distance  between two pixels and in SLIC is a 
composite of two distances,  and , which express 
colour and spatial closeness, respectively, as shown below 
in Eq. 1, Eq. 2, and Eq. 3 (Achanta et al. 2010)

(1)

(2)

(3)

 is denote the sum of the distances in both the  
and  planes, which are then normalized by the grid 
spacing ( ). The density of a superpixel ( ) can be 
controlled by incorporating a variable  with the set higher 
emphasis on spatial proximity, thereby influencing the 
density of the cluster and giving added importance to the 
pixel pitch metric.  denotes the indication of edges that 
exist between two pixels, suggesting the likelihood of an 
object boundary lying between these locations. To initiate 
the process of generating super-pixels, an edge detection 
algorithm assigns a value  for each pixel , indicating 
the probability of it being situated on a boundary. 
Consequently, the distance between two pixels is 
determined as the highest edge probability among all pixels 

along the line connecting these pixels. Equations 4, 5, and 
6 provide the revised distance calculation:

(4)

(5)

(6)
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Where  is the color distance between two pixels 
in an image with their color values red , green , and 
blue  color values. Squared differences between color 
values in each channel produce a scalar value, and the 
square root of this value is taken to obtain the color 
distance.   is the spatial distance between two pixels ( 
,  ) in an image based on their  coordinate values in 
the image. The complete distance between two 
pixelswithin an image is established considering their color 
difference , spatial distance , and an extra component 

 which signifies the edge information’s strength 
between the pixels. Scaling spatial distance is performed 
using a factor , and normalizing color differences is 
accomplished utilizing a factor   

Holistic distance is determined by taking the square 
root of the sum of squared color difference, spatial 
separation, and edge component. To ensure the creation of 
coherent super-pixels, all super-pixels within the image 
need to be interconnected to form edges. In the context of 
generating super-pixels, the decision to merge two 
neighboring super-pixels is guided by a similarity metric 
termed the chi-square  histogram distance in Equation 
7 represents the disparity between two histograms denoted 
P and Q.

(7)

FIGURE 3. Identification of the superpixel segmentation based 
on the SLIC algorithm: A. SARS-COV 2 images, B. SARS-

COV images
On the contrary, a superpixel-based segmentation 

approach involves partitioning images into regions 
corresponding to distinct objects or semantic sections 
within the images. The objective is to establish super-pixels 
that align with object boundaries and significant image 

features. These super-pixels can be generated through 
algorithms that optimize energy functions, including 
techniques like normalized cuts and SLIC, utilizing 
graphical representations of images. Figure 3 demonstrates 
the identification and detection of coronaviruses based on 
super-pixel segmentation from TEM images using the SLIC 
algorithm within MATLAB 2020. 

K-MEAN CLUSTERING

In machine learning, the k-means clustering algorithm is 
often used for data clustering. In the selected clusters, the 
data automatically aggregated into numerous categories, 
with high similarities within each set and low similarities 
between them. Cluster-based super-pixels emerge by 
amalgamating similar pixels via clustering algorithms like 
k-means and mean shift. The notion entails partitioning 
the image into regions marked by similar colors, textures, 
or other pixel properties. However, clustering algorithms 
must align the borders between adjacent super-pixels to 
preserve the boundaries and accurately capture fine details. 
Post-processing techniques, such as graph-based 
optimization or edge-based refinement, can achieve this 
alignment process (Kumar et al. 2016). In the past, 
researchers have used a k-means-based multi-objective 
text clustering strategy. Based on the results, the proposed 
method performed better than the alternatives in text 
clustering, measured by well-known metrics such as 
precision and the F measure (Abualigah et al. 2016). The 
method was thoroughly tested on large datasets and 
consistently demonstrated its superior performance. The 
versatility and efficiency of the algorithm make it suitable 
for a wide range of text clustering tasks (Z. Chen et al. 
2020; Luo 2016). Cluster K organizes the N-D data sets 
and forms meaningful clusters and the following pseudo-
code form for the super-pixels algorithm process:

1. Initial specifying cluster centers, denoted as
.

2. For each  assign it to the nearest cluster in 
the dataset  cluster  if 

 .

3. Update the cluster centers  by calculating their
average value, which is computed as  in cluster

, .

4. Keep alternating 2 and 1 until  stops changing.

5. Repeat steps 2 and 3 until the cluster centers
stop changing, indicating that the algorithm has
converged.
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6. Ensure that neighboring pixels are in the same
cluster by enforcing connectivity through a post-
processing step that merges spatially close but
unconnected clusters.

7. Finally, return the resulting clusters after
completing the entire process.

EXTRACTION FEATURE

Extracting features from the super-pixels generated by the 
SLIC algorithm provides a means to capture distinctive 
attributes for each superpixel, outlining its defining 
characteristics. These feature descriptions encompass 
elements such as color, texture, and shape, offering valuable 
insights for image segmentation, object recognition, and 
scene understanding. By analyzing the features of 
individual super-pixels, researchers can gain a deeper 
understanding of the visual content within an image, 
allowing for more accurate and efficient analysis. 
Additionally, these feature descriptions are used to compare 
super-pixels across different images, enabling the 
development of algorithms that can recognize and classify 
objects based on their visual attributes.  Gabor filters, on 
the other hand, utilize a set of spatial-frequency filters to 
capture the texture information present in each superpixel, 
allowing for more accurate texture-based analysis. 
Additionally, local binary patterns (LBP) can be used to 
encode the spatial arrangement of pixels within a 
superpixel, providing valuable shape information for 
further processing and analysis (Ren & Malik 2003).

As a result, combining relational analysis in conjunction 
with heterogeneous super-pixels and deep-fold features 
enables the identification of objects within images. 
Capsules demonstrate the feasibility of identifying 
superpixel attributes, highlighting the potential value of 
structured image analysis. The uniqueness of this deep 
learning architecture is tested in an image classification 
setting, with an emphasis on the network’s explicable 
decision-making (Smith et al. 2010; Toth et al. 2018).  
Consider a collection of pixels denoted as , which are 
partitioned into multiple disconnected segments that 
encompass all pixels within an image . Each of these 
disconnected segments is associated with a combined value 
representative of region R. This process generates a 
superpixel representation within the feature space, as 
outlined by the Eq 8  (Yang et al. 2019):

(8)

Where  is a variable used for summation, and it 
represents the individual elements or pixels within a 
specific region .  Incorporating the concept of  ,  the 
representation accounts for how the different parts of the 
image connect as a whole. This restructuring of features 
aims to encompass substructures, thereby enhancing 
awareness of the overall structure of the image. Despite 
this rearrangement, the alignment between the feature space 
vectors and their positions within the image is preserved. 
Segmentation algorithms can be classified into four types: 
region-based, edge-constrained, classification or clustering, 
and hybrid approaches (Y. Chen et al. 2016).

In addition, k-means clustering can be applied to 
n-dimensional data sets, with the caveat that natural groups 
already exist. Natural clustering of n-dimensional data 
requires the user to choose a value of k. In addition, the 
super-pixels are color-segmented to classify the region of 
the virus’s morphology. Iteratively adding neighboring 
pixels to cluster centers based on a similarity score yields 
this segmentation result. Common region-based strategies 
use region-growth algorithms, which necessitate the 
creation of comparable measurements and growth criteria. 
To classify unknown regions, these segmentation methods 
cluster them, and then classifiers are trained using the 
characteristics of individual super-pixels (Soltaninejad et 
al. 2017). The imsegkmeans was used for image 
segmentation based on the k-means clustering algorithm. 
It is generally used to divide images into regions or 
segments, with pixels in segments having similar colours, 
textures, or other characteristics. The imsegkmeans 
function takes an image and the number of clusters as input 
and returns an image where each pixel is assigned a label 
corresponding to the cluster. The function utilizes the 
k-means algorithm to find the cluster centres and assigns 
pixels to the closest cluster.

RESULTS AND DISCUSSION

Developing insight into the unique characteristics of the 
SARS-CoV-2 virus can shed light on the complex 
relationships between viruses and their hosts. Critical 
scientific phenomena like virus entrance, reproduction, 
mutation, escape mechanisms, viral abundance, and virus 
structure are all part of this web of interdependence. 
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Despite the complexities involved, many parallels exist 
between the techniques and methods of studying different 
viruses (Laue 2010). Figure 4 illustrates a manual analysis 
performed using ImageJ software to examine the 
morphological characteristics of the SARS-CoV-2 and 
SARS-CoV viruses. Specifically, Figure 4 (A) represents 

the original SARS-CoV-2 image with its segmented. In 
contrast, Figure 4 (B) shows the SARS-CoV authentic 
images with their segmented. The segmentation method 
was carried out so that the geometric parameters of each 
virus could be rigorously isolated and assessed, allowin 
for a thorough comparative study of their size and shape.  

FIGURE 4. Morphometry analysis of virus image using manually: A. Original and segmented images of SARS-CoV-2; 
B. Representing original and segmented images of SARS-CoV.

The unique characteristics of SARS-CoV-2 can aid in 
understanding how viruses interact with their hosts. 
Entrance, replication, mutation, escape mechanisms, virus 
levels, and structural features are all examples of viral 
interactions. These factors are subjects of significant 
interest in virus research. Nevertheless, it should be noted 
that the protocols for preparing and investigating various 
viruses share similarities (Laue 2010). 

Figure 5 shows the results of the automatic detection 
of the SARS-CoV-2 and SARS-CoV area per pixel based 
on image segmentation with the superpixel algorithm. 
Several factors can explain variations in size for SARS-
CoV-2 particles within the same image, such as the stage 
of maturation and/or activation. The location of the virus’s 
replication cycle also impacts the particle density and size. 
Also, particles located at different positions within the cell 
may vary in size due to other environmental factors. Table 
1 shows sample results to compare automatic and manual 
area segmentation matching. 
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A. SARS-CoV-2 segmented

B. SARS-CoV segmented

FIGURE 5. illustrate the Auto-morphometry analysis of Coronavirus image using superpixel segmentation for A. SARS-CoV-2 and 
B. SARS-CoV

TABLE 1. Comparison of manual and auto area segmentation results for SARS-CoV-2 & SARS-CoV
Samples Dataset images Manually segmented Auto segmented

1 Dataset_07_SARS-CoV-2_085 32325 31683
2 Dataset_02_SARS-CoV-2_088 25695 24786
3 Dataset_07_SARS-CoV-2_085 32325 31683
4 Dataset_03_SARS-CoV-2_092 22461 21991
5 Dataset_06_SARS-CoV_021 36220 36828
6 Dataset_06_SARS-CoV_016 32199 31627
7 Dataset_06_SARS-CoV_016 33916 34572
8 Dataset_06_SARS-CoV_101 34907 34177

Automated methods have become increasingly 
prevalent in various research fields, particularly in data 
analysis. The primary objective of using auto-methods is 
to achieve faster and more efficient data processing than 
traditional manual methods. Furthermore, the scalability 
of automated processes enables them to easily handle large 
datasets, which would be a daunting task if performed 
manually. Figure 6 shows the relationship between the 

value of the test samples and the mode of measurement 
used to determine the segmented area. The error values, 
calculated as the difference between the manual and 
automatic measurements, are plotted as individual points, 
providing a clear visual representation of the accuracy of 
the automated method. 
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F IGURE 6. M orphometry analysis of virus image: A. Original and segmented images of SARS-CoV-2; B. Representing original 
and segmented images of SARS-CoV.

FI GURE 7. The error between the manual and Auto virus area segmentation

Figure 7 shows a discrepancy between the manual and 
automated measurements of the tested samples. The error 
determined was subtracting the automatic measurements 
from the manual ones. The results of the error analysis 
between the segmentation of the manual and automated 
virus area showed a low root mean square error (RMSE) 
of 0.0275, indicating a low level of variance between the 
two measurement methods. This relatively low error rate 
highlights the accuracy of the automated measurement 
method, suggesting an effective use in practical applications.

CONCLUSION

In conclusion, this paper has provided a new model for 
accurately and quickly detecting and classifying SARS-
CoV-2 based on superpixel segmentation using TEM 
images. Furthermore, it includes valuable information on 
the mean area size of coronaviruses. This methodology 
offers useful information on the life cycle and progression 
of the virus, reducing the laborious manual work of experts. 
Additionally, this tool has significant potential for outbreak 
management and infection control, facilitating timely virus 
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diagnosis. It can also be extended to investigate other 
unknown viruses to improve early diagnosis and 
understanding of viral replication mechanisms and 
pathogenesis.

Furthermore, it represents a crucial step towards 
developing a robust deep learning model to accurately 
detect and classify SARS-CoV-2 levels in TEM images. 
Future work should consider incorporating more diverse 
data and fine-tuning the model parameters to enhance its 
performance. Finally, the findings of this study contribute 
to the advancement of automated virus detection in TEM 
images, empowering researchers and healthcare 
professionals with a powerful tool for efficient virus 
analysis, early detection, and improved understanding of 
viral diseases. 
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