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ABSTRACTS

The material M303 is commonly used in the fabrication of machinery, automotive components, locomotive axle 
housings, and injection moulds. It is a stainless martensitic chromium steel known for its high strength, wear 
resistance, and corrosion resistance. The primary purpose of this study is to investigate the machinability of M303 
under cryogenic conditions, specifically focusing on high cutting speeds. By exploring the effects of cryogenic 
machining on M303, the study aims to provide insights into the performance and characteristics of this material under 
extreme cutting conditions. This study investigates the influence of cutting parameters on the machinability of M303 in 
a cryogenic environment using liquid nitrogen (LN2) and coated carbide cutting tools in a high-speed turning process. 
The study focuses on high cutting speeds and examines essential machinability factors, including cutting forces, 
surface finish, and tool life. The experimental design utilises a Taguchi L4 orthogonal array to systematically study 
feed rates (0.1-0.2 mm/rev), depth of cut (0.2-0.6 mm), and high cutting speeds (260-340 m/min). Notably, at a low 
cutting speed of 260 m/min, coupled with low feed rates and depth of cut, the study reveals the longest tool life of 
48.57 mintues was achieved. This condition is characterized by a good surface finish and low cutting forces with Ra 
of 0.9 µm  and cutting force of 100 N respectively. The predominant wear occurs on the flank face, primarily due 
to fracturing and chipping, especially under high combinations of cutting parameters. Conversely, gradual wear is 
observed under low combinations of cutting parameters, resulting in an extended tool life. In conclusion, the 
application of LN2 proves effective under conditions of low cutting parameters. The study suggests that the risk of 
fracturing the cutting tool increases at higher feed rates and depths of cut, especially when combined with elevated 
cutting speeds. This research provides valuable insights into optimizing the machining of M303 for enhanced efficiency 
and tool longevity.
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INTRODUCTION

The world is rapidly developing in line with technological 
advancements and the evolution of machining industries. 
In general, machining produces final component geometries 
using various physical effects, which can be broadly 
classified as mechanical, thermal, and chemical processes, 
as well as various combinations of these mechanisms (Liao 
et al. 2021). In the contemporary landscape of technological 
advancements, machining continues to be extensively 
employed as a subtractive process.

M303 is a stainless martensitic chromium steel with 
high hardness, wear and corrosion resistance, as well as 

enhanced polishability and machinability (Kriswanto et al. 
2021; Othman et al. 2022; Zinner et al. 2010). Its primary 
application is in the manufacturing of moulds and dies 
(Kriswanto et al. 2021; Zinner et al. 2010). However, the 
use of M303 is increasingly prevalent in automotive and 
machinery components, tools, and as a shaft housing 
(Othman et al. 2022). The turning process of M303 at high 
cutting speeds under dry cutting conditions was studied by 
Othman et al. (2022). High cutting temperature is 
commonly the main problem in high speed. Therefore, in 
dry machining, high temperature is generated between the 
cutting tool’s edge and the workpiece surface, as well as 
between the cutting tool and the chips (Natasha et al. 2016). 
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This accelerates tool wear, leading to a shorter tool life. 
The overall machining cost increases when tools need 
frequent replacement due to tool wear (Ghani et al. 2010). 
Tool replacement is essential because worn tools can affect 
surface quality, dimensional accuracy, and machining 
process profitability.

Cryogenic machining is a cutting-edge technology that 
involves the use of extremely cold temperatures during the 
machining process. Cryogenic cooling functions as a 
cooling agent and can produce excellent product quality, 
improve tool life, precision and accuracy, reduce cutting 
temperature, decrease surface roughness, and lower power 
consumption to enhance productivity, especially in high-
speed machining (Jawahir et al. 2016; Yildiz & Nalbant 
2008). Furthermore, sustainability considerations play a 
significant role in selecting machining conditions.

The primary problem this study aims to address is the 
adverse impact of high temperatures in dry machining, 
particularly during the turning process of M303 at high 
cutting speeds. High cutting temperatures, generated 
between the cutting tool’s edge and the workpiece surface, 
as well as between the cutting tool and the chips, have been 
identified as a significant challenge (Othman et al. 2022; 
Natasha et al. 2016). This issue leads to accelerated tool 
wear, resulting in a shorter tool life and increased overall 
machining costs (Ghani et al. 2010). The motivation for 
exploring cryogenic cooling, specifically using LN2 as the 
cryogen, stems from the need to mitigate the negative 
effects of high temperatures during machining processes. 
Cryogenic cooling is expected to offer a solution by 
reducing cutting temperatures, extending tool life, 
improving precision and accuracy, and ultimately 
enhancing the overall machinability of M303, especially 
at high cutting. Additionally, the study recognizes 
sustainability considerations as a crucial factor in selecting 
machining conditions, further emphasizing the need for 
environmentally friendly and efficient solutions in the 
machining of materials like M303.

METHODOLOGY

The material used in this study is M303, which has  material 
hardness of 30-32 HRC as supplied by the manufacturer. 
Prior to machining, this material is in the form of a 
cylindrical shape with dimensions of 150 mm in length 
and 60 mm in diameter. The composition of the material 
used is as shown in Table 1. Rhombus-coated carbide 
cutting tools are used in the machining experiment with a 
nose radius of 0.4 mm, and detailed properties and 
composition are shown in Figures 1 and 2, respectively. 
Table 2 shows the detailed specifications of the cutting 
tools.

Table 1. M303 chemical composition (KG 2019)
Type of 
material

C Mn Si Cr Ni Mo

M303 0.27 0.65 0.30 14.50 0.85 1.00

FIGURE 1. Schematic diagram of the cutting tool 
Source: E-techstore (2021)

FIGURE 2.  Tool composition and properties.
Source: E-techstore (2021)

TABLE 2. Detail specification of the cutting tool
Parameter Specification

Cutting tool code 11T304EN, DCMT 
11T304EN-SM CTC3110

Cutting tool type Coated carbide 55 positive 
with hole

Nose radius, RE 0.4 mm
Side cutting length, L 11.6 mm

Cutting tool thickness, S 3.97 mm
Hole diameter, D1 4.4 mm

Circle diameter, IC 9.52
     Source: E-techstore (2021)

Turning process were conducted using CNC machine 
(TORNADO T4) under high cutting speed subjected to 
cryogenic lubrication condition. The experiment was 
conducted in the laboratory environment at room 
temperature of 24 Deg C. Table 3 shows factors and levels 
used whereby Taguchi L4 method was applied to generate 
experimental design. The selection of this orthogonal array 
was based on its efficiency in requiring the least number 
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of experimental runs while accommodating three factors 
at two levels each.

TABLE 3. Factors and levels used in the turning process.
Factor / Level 1 2

Cutting Speed (m/
min) 260 340

Feed rate (mm/rev) 0.1 0.2

Depth of cut (mm) 0.2 0.6

The progress of the tool wear on the flank face was 
measured using a microscope model Zeiss Stemi 2000-C. 
Passes for each experimental trial varied according to the 
tool wear progression measurements. The flank wear land 
(Vb) was measured until it reached 0.15 mm. This is due 
to the time constraint in conducting the experiment. The 
machining process was stopped at specific cutting intervals 

to measure tool wear progression.  The cutting force was 
measured at the beginning of the cutting, i.e. the cutting 
tool still in good condition using a Neo-MoMac system 
that utilize a strain gauge based dynamometer. Surface 
roughness tester (SJ-210, Mitutoyo) was used to measure 
the mean surface roughness (Ra) at the initial machining. 
Machined surface roughness was measured by contact 
stylus across the feed direction taken at the beginning of 
cutting to prevent tool wear effect. Measurements were 
repeated five times for each run with the values then 
averaged for further analysis.

RESULTS AND DISCUSSIONS

Table 4 shows the results of tool life, cutting force and 
average surface roughness in machining M303 at high 
cutting speed regime.

TABLE 4.  Machining results of M303 material on machining output
Exp. Cutting speed (m/

min)
Feed rate 
(mm/rev)

Depth of cut 
(mm)

Tool Life (min) Cutting Force (N) Surface Roughness 
(µm)

260 0.1 0.2 48.57 91.91 0.902
2 260 0.2 0.6 0.42 411.50 3.454

340 0.1 0.6 1.20 264.39 1.383
4 340 0.2 0.2 3.42 151.01 3.229

Experiment 1 recorded the longest tool life at 47.75 
minutes with a feed rate (Vb) of 0.15 mm. In contrast, 
experiments 2 and 3 showed very short tool life at the same 
feed rate. It becomes apparent that a high depth of cut (0.6 
mm) is unsuitable for machining M303 under cryogenic
conditions at high cutting speeds. The failure is attributed
to catastrophic failure, where the cutting edge of the carbide 
tool fractured; a phenomenon observed by previous
researchers (Ghani et al. 2010; Shah et al. 2021). This
catastrophic failure was the primary reason for the
exceedingly short tool life in experiments 2 and 3. Figure
3 visually illustrates the catastrophic failure in experiments 
2 and 3, emphasizing that these cutting conditions are not
recommended for machining M303 under cryogenic
conditions. However, Experiment 4, while exhibiting a
shorter tool life compared to the lower  cutting speed of
260 m/min, could be considered if productivity is the
primary concern.

FIGURE 3. Vb (mm) against cutting time (min)

The cutting force measured in Experiment 1 yielded 
the lowest force, while Experiment 2, especially at the 
combination of high feed rate and depth of cut, resulted in 
high cutting force. This observation aligns with findings 
from Chen et al. (2018), who noted that higher feed rates 
led to increased cutting force during the turning of AD730 
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at high cutting speeds using PCBN tools. Minimizing or 
eliminating cutting force is essential to reduce vibration or 
chatter during the machining process, as these factors can 
significantly impact the quality of the machined surface. 
Figure 4 shows the average surface roughness and cutting 
force for this range of cutting condition.

FIGURE 4.  Average surface roughness and cutting force in 
turning M303

The average surface roughness measured ranges from 
0.902 µm to 3.454 µm, corresponding to the N7 to N9 
grade range according to ISO 1302:2002. This Ra range 
aligns with typical values for the turning process, as noted 
by Grzesik et al. (2010). When compared to a previous 
study investigating the impact of surface roughness on 
M303 using a carbide tool in dry conditions, it was 
observed that the Ra value produced in cryogenic 
conditions was higher than that achieved in dry conditions 
(Othman et al. 2022). This finding contradicts earlier 
studies that asserted cryogenics could result in smoother 
surface roughness (Ali Khan et al. 2019; Baig et al. 2023; 
Dhar & Kamruzzaman 2007; Muhamad et al. 2019). The 
likely reason for this contradiction is the chips tangling 
around the machined surface in this experiment, as depicted 
in Figure 4. Notably, a high feed rate of 0.2 mm/rev resulted 
in rougher surface values. The feed rate is a significant 
factor influencing surface roughness, as similarly found 
by Othman et al. (2022) and Carou et al. (2014).

The utilization of liquid nitrogen, which generates an 
extremely low temperature of -197 ℃, has led to thermal 
shock on the carbide tip, as noted by Abdul Halim et al. 
(2020). This thermal shock accelerates fatigue on the 
cutting tool edge during machining in cryogenic LN2 

conditions compared to dry conditions due to the drastic 
change in temperature. A noticeable change in the color of 
the carbide tip, from a golden to a metallic blue, indicates 
the removal of the coating material on the surface of the 
carbide tool. This removal of the coated material has 
expedited wear on the cutting tool edge. Flank wear was 
found to predominantly control the tool life in these 
experiments, as illustrated in Figure 4. At high depths of 
cut, chipping and fracturing on the cutting edge were 
clearly observed in Figure 4 (b) and (c). In contrast, uniform 
wear on the flank face was observed in Figure 4 (a) and 
(d) at low depths of cut, even though an adherence of chips
was noted in Figure 4 (d).

FIGURE 4. Carbide tool wear; (a) experiment 1 (b) experiment 
2, (c) experiment 3, and (d) experiment 4

The adherence of chips results in the formation of a 
build-up edge (BUE). As explained by Musfirah et al. 
(2017), the disposal of BUE at the edge of the cutting tool 
leads to adhesive wear. This is caused by the chemical bond 
between the substrate of the cutting tool material and the 
workpiece, resulting in the formation of BUE at the cutting 
tool’s edge. The wear mechanism observed aligns with 
findings from Halim et al. (2023) in their study on wear 
mechanisms at the cutting tool edge in cryogenic 
conditions.

The shape and size of the chips formed during the 
machining process exhibited variation, as observed by 
previous researchers (Muhamad et al. 2018). Figure 5 (a)-
(d) illustrates diverse chip shapes, including continuous
tubular, spiral, and ribbon-like shapes as shown in Figure
5(a) and (d). Elemental chips were also noted, as depicted
in Figure 5 (b) and (c). Cutting parameters with a low depth
of cut produced discontinuous and tubular chips, while
those with a high depth of cut resulted in elemental,
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serrated, and arc-shaped chips, consistent with observations 
made by Dhar et al. (2002). According to Dhar et al. (2002), 
the color of the chips becomes brighter, exhibiting a 

metallic or golden hue due to the low cutting temperature 
in cryogenic conditions.

FIGURE 5.  Chip formation; (a) experiment 1 (b) experiment 2, (c) experiment 3, and (d) experiment 4.

CONCLUSION

At a low cutting speed of 260 m/min and with low feed 
rate and depth of cut, the study observed the longest tool 
life, reaching 48.57 minutes. This cutting condition also 
yielded a good surface finish of 0.9 µm and a low cutting 
force of 100 N. The dominant wear occurred on the flank 
face, primarily due to fracturing and chipping, especially 
at high combinations of cutting parameters. Gradual wear 
was only observed at the low combination of cutting 
parameters, resulting in an extended tool life. The study 
concludes that the application of LN2 is suitable under 
conditions of low cutting speed, feed rate, and depth of 
cut. Fracturing of the cutting tool is induced at high feed 
rates and depths of cut, and this effect is exacerbated when 
combined with high cutting speeds.
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