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ABSTRACT

Robust and effective control of brushless dc (BLDC) motors is paramount in modern-day motion control. The BLDC 
motor is known for its high speed, high torque, small size, low noise, and equally low maintenance 
requirements compared to the brushed DC motor. Nowadays, it can be found in the areas of robotics, 
aerospace, military, and industrial machines, among others. In this paper, two inverter topologies, the three-
phase six-switch driver circuit (TPSSDC) and the three-phase four-switch driver circuit (TPFSDC), are used to 
drive and control the speed of the BLDC motor. For the control technique, however, a fitting neural network from 
the deep learning (DL) toolbox is employed to train and improve the speed performance of the motor. Both 
TPSSDC and TPFSDC are simulated and tested in MATLAB Simulink, and the resultant output is analyzed 
graphically and analytically. Graphical observation shows that the TPSSDC control approach is superior in terms of 
reference tracking and has less ripple, and better rise and settling times when compared to the TPFSDC control 
approach, however, the TPFDC is considered for its low cost and simple circuitry. Numerically, the TPSSDC also 
outperforms at 1000 rpm with a 1.685 ms rise time and a 1.420 ms settling time compared to the TPFSDC, which 
rises at 6.526 ms and settles at 5.237 ms. At 3000 rpm motor speed, the TPSSDC is better, having a rise time of 5.815 
ms and settling time of 4.048 ms, when compared to the TPFSDC, which rises at 11.277 ms and settles at 10.067 ms.
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INTRODUCTION

The importance of electrical equipment and motion control 
in modern times cannot be over-emphasized due to their 
wide range of applications. Therefore, enhancements for 
more effective motion control are on the rise. The drive 
and control of the BLDC motor are intuitively challenging, 
as new control strategies always emerge. Many researchers 
have worked on motion control using different techniques 
to achieve high speed and efficiency. Mostly, the six- and 
four-switch driving techniques are considered. The six-
switching driving topology is the conventional method 
with six switches. Ale (2022), conducted a study on 
analysing the performance of an in-wheel BLDC motor 
employing a six-switching strategy, the PID controller is 
used to regulate the speed of the motor. de Almeida et al. 
(2020) also used six-switching to drive the motor with a 

variable speed robust control, this was achieved by 
employing a convex optimization approach. More so, 
additional control approaches might be incorporated to 
control and optimize the performance of a motor which 
works with either six or four switching inverters such as 
Surabhi et al. (2017) who worked on six switching inverters 
using a particle swarm optimization method in conjunction 
with fuzzy logic controller to boost the performance of the 
motor. The resultant output of the technique is compared 
with that of the PID controller for optimum results. Equally, 
Vikhe et al. (2019) and Wang et al. (2020) worked on six 
switching inverter topologies and a neural network was 
utilized to control the speed of a motor. The resultant output 
of the neural network is analysed mathematically and 
compared equally for good workability. The Artificial 
Intelligence control technique is a data-driven method, 
with branches such as machine learning and deep learning 
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which have recently been used to train and optimize the 
motor’s performance (L. Saleh et al. 2021; Lajić & Matić 
2022; Yao et al. 2023). Consequently, it has been proven 
by several works that the artificial neural network can be 
used to attain optimum speed control (Al Mashhadany et 
al. 2022; Pamuji et al. 2022; Saleh et al. 2022). Likewise, 
more controllers can be incorporated together, such as the 
model reference adaptive control and the artificial neural 
network, to resolve a nonlinearity problem as discussed by 
Archana and Dr Unde (2019). The technique attained a 
tremendous improvement in system efficiency. While Didi 
et al, (2017) and Huang et al, (2020) utilized the model 
reference adaptive control to achieve optimum speed. Also, 
modern work shows that comparing the performance of 
the motor using different inverter topologies in view to 
determine the best control approach for an efficient motor 
drive is crucial here, Gujja and Ishak (2023) illustrated and 
matched the system performance based on six and four 
switching inverters to ascertain the best driving topology, 
PID parameters are tuned using optimization techniques 
to attain optimum performance. In the case of Özge Gülbaş 
et al. (2020), the PI-based particle swarm and sine-cosine 
optimization approach was applied to improve the system 
efficiency and to minimize overshot, a decay coefficient is 
used in the fitness function. Additionally, experiments were 
carried out by some researchers to validate their simulation 
findings (Arun Prasad & Nair, 2020; Vanchinathan et al. 
2021). Moreover, consideration has been given lately to a 
cost-effective four-switching driving topology for its low-
cost and less complex structure. Naseri et al. (2021) and 
Safak et al. (2016) show the BLDC motors control 
employing the four-switching driving method is achievable 
and the performance is similar to the six-switching inverter 
topology. However, both topologies can be implemented 
using both open and closed-loop control techniques, the 
closed is preferred for its accuracy due to the feedback 
system (Mohd Zaihidee et al. 2022; Reddy et al. 2023).

Considering some of the problems from previous work 
such as overshoot, undershoot, low rise and settling time 
during operation which led to low performance. To curtail 
the problem the fitting neural network from the deep 
learning toolbox was employed for its ability to effectively 
train and precisely imitate the motor’s behaviour for 
previously untrained data minimizing the overshoot and 
undershot as well as improving the system rise and settling 
time ensuring the output speed agrees with the reference 
speed. 

Therefore, this paper intends to comprehensively 
compare the performance of the motor using both the 
TPSSDC and TPFSDC topology. The performance is 
analysed both graphically and numerically which aims to 
precisely ascertain the best control and driving strategy for 
the BLDC motor. Also, a neural network from the deep 
learning control toolbox is used to train and predict the 
future system response for effective speed control. This is 
possible by collecting the data of the reference input and 
the resultant speed output of the model. These collected 
data are employed by the neural networks to train the model 
and predict the best future response. Figure 1 (a) and (b) 
show typical topologies of TPSSDC and TPFSDC 
respectively. TPSSDC is a conventional six-switch inverter, 
while TPFSDC has only four switches and two capacitors. 
The two capacitors can be connected in series in any phase 
leg. Therefore, the controller has only four switches to 
regulate the motor’s phase windings, hence, the motor 
speed and torque. 

The article’s structure encompasses the methodology 
of the proposed technique which vividly discusses the 
motor modelling, TPSSDC and TPFSDC control strategy 
and deep learning neural network control approach. The 
result and discussion section shows the resultant waveform 
and analyses of the numerical values while the conclusion 
section summarizes the article’s findings.

FIGURE 1. (a) TPSSDC topology, (b) TPFSDC topology
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METHODOLOGY

MODELLING OF A BLDC MOTOR

The three-phase BLDC motor can be described in an 
analytical model, with few assumptions such as ignoring 
the saturation effect of the iron cores and uniform airgap 
in the machine. The hall-effect sensors are placed at 1200 
electrical symmetrically in order to predict the exact rotor 
position for the correct phase commutation sequence. 

TPSSDC FOR BLDC MOTOR CONTROL

The TPSSDC arrangement is the usual driving approach. 
In this work, the IGBT was utilized for its high power and 
fast switching abilities; six IGBTs were also used as 
switches i.e. S1, S2, S3, S4, S5, and S6 respectively. In this 
technique, only two phases will be active at a time. 
Moreover, a controller can be incorporated to boost the 

system’s performance. Figure 2 shows the complete system 
model. While Figure 3 illustrates the TPSSDC switching 
sequence and Table 1 shows the switching patterns. The 
voltage equations of TPSSDC can be represented as given 
below. Considering the three-phase neutral point N of 
Y-connected windings.

(1)

where: VAN, VBN, and VCN are the phase voltages, M is 
the mutual inductance, and L represents the self-inductance,  

 are the phases currents, EA, EB, and EC are 
the phase back-emfs. For symmetrical phase windings, the 
phase resistances are equal and denoted as RS.

F IGURE 2. Complete model of TPSSDC with BLDC motor in MATLAB Simulink

FIGURE 3. TPSSDC switching patterns
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TA BLE 1. Six-step switching sequence for TPSSDC
Steps Switches Active Phases Silent Phase

1 S1, S4 A, B C

2 S5, S4 C, B A

3 S1, S6 A, C B

4 S5, S2 C, A B

5 S3, S6 B, C A

6 S3, S2 B, A C

TPFSDC FOR BLDC MOTOR CONTROL

This inverter uses only four IGBTs. The switches are S1, 

S2, S3, and S4, while capacitors C1 and C2 are connected in 
series, and their midpoint is connected to the terminal phase 
A winding of the BLDC motor. In this topology, being 
connected to the capacitors, the motor’s phase A winding 
cannot be controlled. An appropriate motor controller 
should be incorporated with the inverter for effective speed 
control. Considering the voltage from motor terminals to 
the neutral point N, the TPFSDC voltage equations can be 
represented by. 

(2)

(3)

(4)

So, the equations (2) to (4) can be arranged in a Matrix 
state-space form as:

(5)

Let the magnetic coupling between phases be:

(6)

where: M is the mutual inductance and L stands for the 
self-inductance. Substituting (6) in (5), it yields.

(7)

Let the three-phase current equation be:

(8)

The inductance matrix in the system can be written as:

(9)

Similarly,

(10)

(11)

(12)

Recall that the voltage obtained from point A to N with 
TPFSDC is represented as:

(13)

Where: C is equal to C1 and C2, and voltages across them 
are and  respectively, the input voltage is represented 
as . Thus, the voltage in the capacitor can be assumed 
as the DC voltage and voltage variation.

(14)
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Therefore, the equation can further be deduced as

(17)

Figure 4 is the TPFSDC complete model. Whereas, 
Figure 5 shows the switching patterns, and Table 2 indicates 
the TPFSDC switching sequence. 

Likewise

(15)

Consequently, the voltage variation can be deduced as

(16)

The voltage amplitude variation is directly linked to 
the amplitude of phase current , speed and the value of 
the capacitor.

FIGURE 4. Complete model TPFSDC

FIGURE 5. Switching patterns of TPFSDC
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TABLE 2. Six-step switching sequence for TPFSDC
Steps Switches Active Phases Silent Phase

1 S4 A, C B
2 S1, S4 B, C A
3 S1 B, A C
4 S3 C, A B
5 S3, S2 C, B A
6 S2 A, B C

CONTROL STRATEGY

Regardless of control techniques deployed in the BLDC 
motor, knowledge of rotor position is required in order to 
provide regulated voltage by the inverter to the motor. This 
rotor position will determine which inverter switches are 
active high and low. In this work, Hall-effect sensors are 
employed to feedback on the rotor position, which makes 
the commutation possible. Additionally, the PID controller 
is used to control the speed of the motor at the initial 

parameter setup from where the model simulated data was 
obtained for subsequent application. Consequently, the 
neural network from the deep learning (DL) toolbox is 
utilized to train and optimize this attained data by predicting 
the future response of the systems for enhanced performance. 
This control strategy is applied to both TPSSDC and 
TPFSDC to ascertain the best performance and control 
method. Table 3 shows the motor parameters used in this 
project.

TABLE 3. Motor Parameters
Parameters Values Units

Rated Voltage 500 V
Rated Speed 1000-3000 RPM
Rated Torque 5 Nm

Number of Poles 8 -
Phase Resistance 2.7850 Ohms
Phase Inductance 0.000835 H
Voltage Constant 44.8867 V.peakL-L/Krpm
Torque Constant 0.42864 Nm/A peak

Flux Linkage 0.0535795 Vs

DEEP LEARNING NEURAL NETWORK

Deep learning (DL) is a data-driving control technique. In 
this project, a fitting neural network from the DL toolbox 
was used to train and improve the system’s performance. 
The neural network is utilized to fit data using the neural 
network backpropagation which trains to map between a 
set of input and output data. Here, the DL neural network 
is preferred when dealing with a signal data type where 
the speed measured is in time more so, it provides a flexible 
mechanism for solving a wide variety of tasks beyond a 
simple classification compared to other DL methods. In 
this work, data was attained by running the model at an 
initial PID setup where the reference input and resultant 
output signals were then captured and converted to data. 
The data was used by the fitting neural network to train 
and predict the feature response. After training, a neural 

network toolbox was generated automatically which was 
used in the model for optimum motor control. Figure 6 
shows the DL training network.

To train the data and forecast the reaction, a DL neural 
network was used in order to accomplish a future response. 
This is done by first handling a sizable collection of data 
and then looking for a response within it. There are three 
categories for the layer. Data is received by the input layer 
and sent to the network for processing. The hidden layer 
that uses mathematical computations to forecast future 
responses is the next. The information obtained from the 
hidden layer will display an image response at the last level, 
the output layer.

The training state is indicated in Figure 7. The gradient 
at epoch 4 of 8.4315e-10 shows that learning has achieved 
the minimum goal. Additionally, it can be seen that as the 
number of epochs rises, the gradient’s value decreases. The 
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Lavenberg-Marquardt training procedure was employed, 
and the network’s lowest damping factor, MU 0.001, ended 
at 1e-05 while MU’s definite value 1e-10, was used. The 

validation check confirms compliance with the overall 
network standard. 

FIGURE 6. Training network

FIGURE 7. DL training state plot

FIGU RE 8. Performance plot

The performance plot in Figure 8 indicates the end of 
training time at epoch 4 while showing the best validation 
performance of 1510.5863 at epoch 4.

When looking at the histogram error plot in Figure 9, 
it can be observed that the instance represents the test data, 
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the bin displays an error of 17.12, and the training data is 
around 7e+04, while the validation data ranges from 7e+04 

to 8.5e+04 and the test data ranges from 8.5e+04 to 10e+04. 
Zero error indicates the bias axis.

FIGURE 9. Error histogram

FIGURE 1 0. Regression plot

R in Figure 10 is the regression plot, denoting the 
relationship between target and output. This indicates that 
target and output have an exact linear relationship when R 
= -3.5159e-22. Based on the regression diagram above, R 
= 1.5993e-22 represents the data’s best fit.

RESULTS AND DISCUSSION 

The Simulink BLDC motor model was tested at 1000 
rpm, 3000 rpm, and equally at random speeds ranging 
from 50 to 3000 rpm to evaluate the system’s performance 

and flexibility during an instant speed change. The 
TPSSDC and TPFSDC were employed to drive and 
control the speed of the BLDC motor, and the resultant 
output was analyzed both graphically and analytically to 
ascertain the control strategy with the best performance 
considering the system overshoot, undershoot, rise time, 
and settling time. Also, the model’s ability to reference 
tracks was equally accessible. The dc link voltage of 500 
V was supplied to the inverter, and a 5 Nm load torque 
was applied as motor load. The system performance and 
the output results for TPSSDC and TPFSDC were 
compared and analyzed to attain the best results out of the 
two techniques.
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FIGURE 11. Speed responses of four- and six-switch inverters at 1000rpm

As shown in Figure 11, at 1000 rpm, both TPSSDC 
and TPFSDC indicate good speed tracking capability. 
However, it can be observed graphically that the TPSSDC 
outperforms the TPFSDC in terms of rise and settling times. 
More so, numerical values prove the same that the TPSSDC 
rises at 1.685 ms, which is better as compared to the 

TPFSDC with 6.526 ms. The settling time of 1.420 ms for 
TPSSDC looks equally outstanding when compared to that 
of TPFSDC with 5.237 ms. However, there is not much 
difference considering the overshoot and undershoot, as 
they look approximately similar.

FIGURE 12. Speed response of four- and six-switch inverters at 3000rpm

Graphically, a wide difference can be observed at 3000 
rpm where the TPSSDC is the favourite as it indicates good 
speed tracking and a better settling time than the TPFSDC, 
which struggles to meet the targeted speed as shown in 
Figure 12. Numerically, the TPSSDC rises at 5.815 ms, 
which beats the TPFSDC, which rises at 11.277 ms. As 
can also be observed, the TPSSDC settles faster at 4.048 

ms as compared to the TPFSDC, which settles at 10.067 
ms. Additionally, TPSSDC has a lower overshoot of 
0.505% when compared to the TPFSDC’s 0.685%.

At random speed, as shown in Figure 13, both the TPSSDC 
and TPFSDC were able to follow the reference speed, but some 
differences were noted during switching high or low. Even so, 
the TPSSDC proves better in speed tracking as it exactly meets 
the targeted speed at random, compared to the TPFSDC, which 
struggles to meet the targeted speed at 3000 rpm.
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FIGURE 13. Speed  response of four- and six-switch inverters at random speeds

FIGURE 14. Motor phase currents in TPFSDC at 3000rpm.

Figure 14 shows the motor phase currents of TPFSDC. Some overshoot and undershoot are observed but has fewer 
switching ripples compared to the TPSSDC. This is a result of the smaller number of switches, which are four as compared 
to TPSSDC’s six.
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FIGURE 15. Motor phase currents in TPSSDC at 3000rpm.

The stator currents for the TPSSDC, as shown in Figure 15, look better as it is stable and have less overshoot and 
undershoots during switching when matched with the TPFSDC. However, high switching ripples are seen compared to 
the TPFSDC.

.

FIGURE 16. Electromagnetic torque in TPFSDC at 3000rpm
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FIGURE 17. Electromagnetic torque in TPSSDC at 3000rpm

Figure 16 shows the electromagnetic torque for 
TPFSDC. Some instability with high ripple, and some 
overshoot and undershoot are also observed. This is 

because the capacitor terminal, which is not a switch, 
cannot be controlled.

Figure 17 shows the electromagnetic torque for the 
TPSSDC, which indicates some stability with smaller 
ripples and less overshoot as compared to the TPFSDC.

TABLE 4. Numerical comparisons between TPSSDC and TPFSDC

Time Responses
Four Switching Six Switching

1000rpm 3000rpm 1000rpm 3000rpm

Rise Time 6.526ms 11.277ms 1.685ms 5.815ms

Settling Time 5.237ms 10.067ms 1.420ms 4.048ms

Overshoot i 0.505% 0.685% 0.521% 0.505%

Undershot 2.000% 2.000% 1.997% 1.999%

Thus, numerical values in Table 4 precisely validate 
the graphical results. Hence, it is clear that the TPSSDC is 
better when compared with the TPFSDC employing the 
DL control strategy.

CONCLUSION

Based on this research work, it can be concluded that the 
neural network control approach was able to minimize the 
system overshoot and undershoot as well as improve the 
system rise and settling time in both the four and six driving 
topologies. However, it was seen that the TPSSDC proves 
to be a better option for driving a three-phase, permanent 

magnet BLDC motor. Graphical observation also confirms 
the TPSSDC is the preferred technique for its good 
reference tracking, minimum ripple, and better rise and 
settling times when matched with the TPFSDC method. 
Numerical values also validate the graphical results, as it 
can be seen that at 1000 rpm, the TPSSDC rises at 1.685 
ms and settles at 1.420 ms, while the TPFSDC rises at 
6.526 ms and settles at 5.237 ms. Also, at 3000 rpm, the 
TPSSDC rises at 5.815 ms and settles at 4.048 ms, 
compared to the TPFSDC, which rises at 11.277 ms and 
settles at 10.067 ms. Hence, the TPSSDC outperforms the 
TPFSDC. However, the TPFSDC is preferred economically 
because there are fewer switches and the topological 
arrangement is less complex. 
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