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ABSTRACT

Alzheimer’s disease, acknowledged for its intricate and degenerative characteristics, presents considerable challenges, 
particularly among the elderly population. The relentless nature of Alzheimer’s, marked by the gradual deterioration 
of cognitive function, underscores the urgency to develop effective strategies for early diagnosis and intervention. 
Artificial intelligence has played a significant role in terms of disease diagnosis and treatments. However, it has 
got limited acceptance in the medical community due to its lack of transparency. This study aims to advance the 
understanding and prediction of Alzheimer’s disease progression through the integration of time-aware modeling 
and Explainable AI techniques. It makes significant contributions by addressing two key objectives in the context of 
Alzheimer’s disease. First, by including temporal aspects, it accurately depicts the pace at which relevant 
predictors change over time, thereby capturing the dynamic nature of Alzheimer’s disease. Second, by giving 
interpretable insights into the algorithm’s decision-making process, the study hopes to empower researchers and 
physicians. This approach not only enhances transparency but also builds trust in the model’s outcomes. The 
ADNI dataset, comprising 2980 observations, was employed for developing a prediction model using various 
machine learning classifiers. Among these classifiers, the Random Forest model emerged as the top performer, 
exhibiting superior accuracy, a high Coefficient of Determination (R2), and an impressive F1 score. To enhance 
interpretability, subsequent analyses utilized LIME and SHAP techniques. By combining time-aware modeling with 
Explainable AI methods, we seek to unravel the dynamic relationships within the dataset, providing transparent 
insights into the temporal evolution of Alzheimer’s disease. Thus, this paper contributes to the creation of a 
clinically relevant and practical model for monitoring Alzheimer’s disease progression that holds the potential for a 
deeper understanding of the evolving nature of the disease and paving the way for personalized and timely 
interventions.
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INTRODUCTION

Alzheimer’s disease, a complex and degenerative 
condition, presents formidable challenges, particularly 
among the elderly demographic. The gradual erosion of 
cognitive function and memory associated with Alzheimer’s 
underscores an urgent need for innovative strategies in 
early diagnosis and intervention (Dubois et al. 2009). While 
artificial intelligence (AI) has emerged as a promising tool 
in disease diagnosis and treatment, its limited acceptance 

in the medical community, attributed to a lack of 
transparency, calls for transformative approaches (Chun et 
al. 2022; Fabrizio et al. 2021). This research aims to 
improve our knowledge and prediction of the course of 
Alzheimer’s disease to tackle these issues. The focus is on 
the combination of Explainable AI methods and time-aware 
modelling to create a complex and comprehensible model 
that takes time into account in addition to present values. 
The study seeks to uncover the dynamic interactions within 
the dataset with the rate of change in significant predictors 
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across time. This approach provides visible understanding 
of the temporal evolution of Alzheimer’s disease. 

Alzheimer’s disease (AD), which is signified by a 
persistent decrease in memory and cognitive function, 
continues to be a major global health concern. To lessen 
the burden on people and healthcare systems, it is 
imperative to create efficient ways for early diagnosis and 
intervention. With the use of advanced computational 
methods, artificial intelligence (AI) has become a ray of 
hope, helping us make sense of complex statistics and 
improve our knowledge of AD. Recent studies highlight 
the multifaceted role of AI, encompassing early detection 
methods and the tailoring of personalized treatment plans 
for individuals navigating the complexities of AD.

While AI-powered systems offer distinct competitive 
advantages, their inherent black-box nature raises concerns 
about transparency and the ability to elucidate decision-
making processes. This challenge has prompted the 
emergence of explainable artificial intelligence (XAI), 
advocating for AI algorithms capable of revealing their 
internal processes and providing clarity on the rationale 
behind their decisions (Minh et al. 2022). Embedding 
explainable machines, particularly in healthcare, holds the 
potential to significantly streamline the repetitive tasks 
undertaken by medical professionals, allowing them to 
focus more on the interpretation of disease diagnoses. The 
challenge of black-box models, where predictions are 
highly accurate yet lack transparency in their internal 
mechanisms, has led to the development of various 
explainable artificial intelligence (XAI) frameworks (Adadi 
& Berrada, 2018). Notably, popular frameworks such as 
LIME (Local Model Agnostic Explanations) (Ribeiro et 
al. 2016), SHAP (SHapley Additive exPlanations) 
(Lundberg & Lee, 2017), and GradCAM (Gradient-
weighted Class Activation Mapping) (Selvaraju et al. 
2017), among others, have found extensive use in 
addressing this challenge within the context of Alzheimer’s 
disease (AD). Studies (Böhle et al. 2019; Gaur et al. 2022; 
Kamal et al. 2021; S. et al. 2021; Shad et al. 2021) provide 
a comprehensive list of works employing LIME, SHAP, 
LRP, and GradCAM methods and their combined approach.

The primary objective of this research is to contribute 
to the development of a more accurate and clinically 
relevant model for predicting Alzheimer’s disease 
progression. This involves the integration of time-aware 
modeling and Explainable AI techniques to enhance the 
interpretability of the model. The study seeks to address 
critical questions:  How can time-aware modeling and 
Explainable AI be synergistically employed to improve 
Alzheimer’s disease progression prediction? What is the 
impact of incorporating both current values and the rate of 
change in key predictors over time on the development of 
an interpretable model? 

The research intends to fill the existing gaps in our 
comprehension of Alzheimer’s progression prediction and 
introduce a novel, temporally sensitive approach.

The goal of this research is to provide clinicians with 
better accurate and comprehensible tools by addressing the 
gaps in existing methods for predicting Alzheimer’s 
disease. Time-aware modelling and Explainable AI are 
integrated with the goal of enhancing the clinical relevance 
of AI in Alzheimer’s research. This approach may enhance 
our capacity to predict results and shed light on the intricate 
temporal dynamics of the disease. The significance of this 
research lies in its potential to aid in the creation of more 
effective, customized, and timely medications, ultimately 
improving the lives of Alzheimer’s patients and their 
families.

The rest of the paper is organized as follows: Section 
2 presents the methodology and the integration of Time-
aware modelling with Explainable AI techniques. The 
results and analysis are presented in Section 3, and the 
implications of the findings are covered in Section 4. 
Section 5 provides a summary of the major contributions 
and future scope.

MATERIALS & METHODS

DATASET

The dataset includes 2980 observations and a wide range 
of predictors that were extracted from the ADNI dataset 
(ADNI | ACCESS DATA, n.d.). These predictors represent 
important clinical, genetic, demographic, and neuroimaging 
characteristics. A complete overview of the progression of 
a disease is provided by the representation of each predictor 
by both its current value and its rate of change over time. 
The full set includes genetic markers like APOE4 status, 
clinical assessments like CDRSB and ADAS scores, and 
demographic and educational data like age and education 
level. Brain structural volumes are included in neuroimaging 
measurements, and each variable has an associated rate of 
change. The target variable classifies the current disease 
stage into five categories: Normal (NL), Mild Cognitive 
Impairment (MCI), Alzheimer’s Disease (AD), transition 
from NL to MCI, and transition from MCI to AD. This 
amalgamation of current values and dynamic change rates 
equips the dataset for advanced analyses, facilitating the 
prediction of Alzheimer’s disease progression and the 
identification of potential transition patterns between 
different disease stages.

PROPOSED METHOD

An overview of the proposed method is given in Figure 1.
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FIGURE 1. Overview of the proposed method

The methodology begins by calculating the rate of 
change for each predictor over different months, resulting 
in the creation of two versions for each variable: one 
denoting the current value (predictor_cur) and the other 
representing the rate of change (predictor_diff). 
Subsequently, missing values are imputed, and the dataset 
is balanced through oversampling, ensuring a representative 
distribution of classes. Outliers are then meticulously 
removed using the Interquartile Range (IQR) method to 
enhance the accuracy and reliability of subsequent analyses 
(Muslikh et al. 2023). To unravel the complex relationships 
within the dataset, various black-box models are employed, 
and their accuracies are systematically evaluated. The 
model exhibiting optimal accuracy is selected for further 
interpretability analysis. LIME, a tool for individual 
instance explanation, is applied to elucidate the predictions 
of the chosen model (Ribeiro et al. 2016). This process is 
replicated with SHAP (Lundberg & Lee, 2017), a method 
known for its global interpretability, to calculate feature 
importance for all instances. The most influential feature 
identified by SHAP is subjected to a thorough analysis 
using Partial Dependence Plots (PDP) (Jerome H., 2001), 
shedding light on its clinical relevance and contribution to 
disease progression. This comprehensive methodology 
integrates the strengths of black-box models with 
interpretable techniques, providing a multifaceted 

understanding of predictor dynamics and their impact on 
disease progression.

PREPROCESSING

In the preprocessing phase, the Alzheimer’s disease 
progression dataset underwent meticulous transformations 
to enhance its suitability for predictive modeling. The 
inclusion of diverse predictors, such as demographic 
variables, cognitive assessments, and neuroimaging 
metrics, necessitated careful handling of missing values 
and normalization. To address the class imbalance, the 
Synthetic Minority Over-sampling Technique (SMOTE) 
(N. V. et al. 2002) was applied, generating synthetic 
samples to augment the representation of underrepresented 
classes. Additionally, the original class labels representing 
Alzheimer’s disease stages were replaced with more 
interpretable identifiers, facilitating a clearer understanding 
of the disease progression. These preprocessing steps 
collectively laid the groundwork for subsequent analyses, 
ensuring a robust and balanced dataset ready for the 
development of predictive models aimed at uncovering 
patterns in Alzheimer’s disease progression. Figure 2 shows 
the distribution of 5 classes before and after applying 
oversampling.
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FIGURE 2. Class distribution before and after oversampling

The visualizations were created after employing a 
robust outlier removal technique based on the Interquartile 
Range (IQR) method. This method identifies outliers as 
data points that fall outside 1.5 times the interquartile range 
from the first and third quartiles. Subsequently, these 
outliers were systematically removed from each variable 
in the dataset. The resulting box plots exhibit a more 
accurate representation of variable distributions by 
excluding extreme values, providing a clearer insight into 

the central tendency, and spread. Similarly, the bar plots 
illustrating variable means have been refined, offering a 
more precise comparison among features after the removal 
of outliers. This rigorous outlier handling enhances the 
reliability of the visualizations, ensuring that the depicted 
patterns are not unduly influenced by extreme observations, 
and thereby fostering a more accurate interpretation of the 
dataset. Figure 3 gives the boxplot of the variables after 
removing the outliers.

FIGURE 3. Boxplot of the predictors
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MODELING AND EVALUATION

In this comprehensive modeling approach, an array of 
machine learning classifiers has been harnessed to tackle 
the intricacies of a multiclass classification task. The 
machine learning classifiers have been employed on three 
distinct sets of predictors: one associated with the current 
features (Predictor_cur), another linked to the rate of 
change features (Predictor_diff), and a combined set that 
incorporates both types of predictors. The process kicks 
off with essential data preprocessing steps, including the 
standardization of features to ensure uniform scaling. The 
classifiers, ranging from K-Nearest Neighbors (KNN) to 
Support Vector Machines (SVM), and encompassing 
Random Forest, Gradient Boosting, and Multilayer 
Perceptron (MLP), undergo a meticulous optimization 
process. 

GridSearchCV is a strategy that systematically 
investigates a range of hyperparameter combinations to 
achieve the most successful model configurations through 
hyperparameter tweaking. The GridSearchCV method is 
part of the popular Python machine learning toolbox, scikit-
learn. This method, which is a component of scikit-learn’s 
model selection module, is frequently used to tune 
hyperparameters by thoroughly searching a given 
hyperparameter grid. The KN and SVM classifiers are then 
trained using the optimal hyperparameters that have been 
chosen. Evaluation criteria, like accuracy, R-squared (R2) 
scores, and confusion matrices, are used to evaluate how 
well these models perform on a specific test dataset.

Other models, such as Random Forest, Gradient 
Boosting and MLP, are also used in addition to the basic 
classifiers to provide a thorough understanding of the 
relative efficacy of various techniques in addressing the 
multiclass classification problem. To observe and 
comprehend the discriminatory performance of the models, 
Receiver Operating Characteristic (ROC) curves are 
constructed. These curves highlight the trade-off between 
true positive and false positive rates, offering insights into 
each model’s classification process. This multimodal 
method seeks to provide a thorough understanding of each 
classifier’s relative strength and weaknesses in managing 
the intricacies present in multiclass classification scenarios, 
in addition to optimizing each classifier’s performance. 
The resulting visualizations and metrics serve as invaluable 
tools for assessing the models’ overall effectiveness and 
guiding further refinement for enhanced predictive 
capabilities.

EXPLAINABLE AI

Explainable AI (XAI) refers to the set of techniques and 
methods used to make the decisions and outputs of artificial 

intelligence (AI) systems understandable and interpretable 
by humans (Ribeiro et al. 2016). The goal of Explainable 
AI is to enhance transparency, trust, and accountability in 
AI systems, particularly in situations where the decision-
making process might otherwise be considered a “black 
box.”

LIME (Ribeiro et al. 2016): LIME is a model-agnostic 
technique employed in machine learning for rendering 
individual prediction interpretations from complex models. 
Mathematically, LIME’s goal is to find a surrogate model 
g(z) (often linear) that approximates the behavior of the 
black box model f(x) in the vicinity of the instance x. π_x 
(z) are the sampling weights that measure the proximity
of z to x. The weighted loss function is calculated as
L(f,g,π_x )=∑▒〖π_x (z) [f(x)-g(z)]^2 〗,  where π_x (z)  is
a weight assigned to each perturbed instance z.

In this implementation, local explanations for a user-
selected instance are generated using LIME after a 
RandomForestClassifier classifier has been trained on a 
dataset. LIME creates an interpretable surrogate model by 
varying the input characteristics and tracking the resulting 
model responses. This provides insight into the significant 
variables and how they affect the model’s choice. To 
improve the interpretability of black box models and to 
provide an improved comprehension of the local decision-
making process, the results—actual class, predicted class, 
and LIME-generated explanations are provided. 

SHAP (Lundberg & Lee, 2017): A-n effective 
interpretability method called SHAP is intended to clarify 
the role of every feature in a model’s output. Here, a 
RandomForestClassifier is trained on a dataset, and a 
TreeExplainer is used to calculate SHAP values. After the 
user chooses an example from the test set, SHAP values 
are produced to show how each characteristic affects the 
prediction made by the model. To provide a thorough 
understanding of feature relevance, the calculated SHAP 
values for individual features are displayed alongside the 
actual and predicted class labels. To further improve 
interpretability, a summary graphic is also created to show 
the overall influence of the features on the prediction.

Partial Dependence Plot (Jerome H., 2001): 
Visualization tools called Partial Dependence Plots (PDPs) 
are utilized to investigate the link between a particular 
feature and a machine learning model’s anticipated result. 
The process is choosing one interesting feature, holding 
other variables constant, and examining how changes in 
its values affect the model’s predictions. This is achieved 
by systematically varying the chosen feature and recording 
the average prediction across all instances. The resulting 
plot illustrates the impact of the selected feature on the 
model’s output, providing valuable insights into its 
behavior and aiding in the interpretation of complex 
machine learning models.
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RESULTS

The presented results focus on evaluating the influence of 
incorporating temporal elements into the dataset. In the 
initial dataset, the rate of each predictor across distinct time 

periods is also integrated. We have assessed various 
classifiers on both the datasets, one containing temporal 
information and the other without. Tables 1 and 2 delineate 
the performance results of the classifiers under these 
conditions.

TABLE 1. Performance of various classifiers on entire dataset (Predictor-cur and Predictor-diff)

TABLE 2. Performance of various classifiers on current value (Predictor-cur)

The comparison between the two datasets, one with 
temporal information and the other without, reveals that 
incorporating temporal information generally enhances the 
performance across various classifiers. Across most 
classifiers, the dataset with temporal information 
consistently exhibits higher accuracy, R2 score, precision, 
recall, and F1 score compared to the dataset without 
temporal information. This suggests that the inclusion of 
temporal aspects contributes positively to the predictive 
capabilities of the classifiers. Random Forest stands out in 
both datasets, demonstrating its robustness and adaptability. 
In the dataset with temporal information, Random Forest 
achieves superior performance, reinforcing its effectiveness 
in capturing temporal patterns. Other classifiers, such as 
SVM and Gradient Boosting, also benefit from the 
inclusion of temporal features. Random Forest’s superior 
performance across various tasks can be attributed to its 
ensemble learning approach, where multiple decision trees 
are constructed during training to form a collective model. 
This ensemble strategy enhances accuracy and stability by 
mitigating overfitting, as predictions are aggregated from 
diverse trees. The introduction of feature randomization at 
each split ensures that only a random subset of features is 

considered, promoting decorrelation among the trees, and 
increasing the model’s robustness against overfitting. 
Random Forest’s adeptness at handling complex non-linear 
relationships and intricate feature interactions further 
contributes to its success.

The presented results include confusion matrix 
heatmaps, ROC curves, and R2 scores obtained from 
different black-box models: K-Nearest Neighbors (KNN), 
Support Vector Machine (SVM), Random Forest, Gradient 
Boosting, and Multilayer Perceptron (MLP). The confusion 
matrix heatmaps provide insights into the model’s 
classification performance across different classes, 
showcasing the true positive, true negative, false positive, 
and false negative predictions. ROC curves illustrate the 
trade-off between sensitivity and specificity, offering a 
comprehensive view of each model’s discriminatory ability. 
Additionally, R2 scores quantify the proportion of variance 
explained by the models.

Figure 4 depicts the confusion matrix of all 5 models. 
The comparative analysis of the black-box models reveals 
variations in their performance metrics. The accuracy 
scores indicate that Random Forest achieved the highest 
accuracy at 90%, followed by Support Vector Machine 
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(SVM) at 89%, Gradient Boosting at 88%, Multilayer 
Perceptron (MLP) at 88%, and K-Nearest Neighbors 
(KNN) at 79%. In terms of R2 scores, Random Forest again 

leads with 81%, followed by SVM and MLP both at 84%, 
Gradient Boosting at 77%, and KNN at 65%.

FIGURE 4. Confusion matrix for five different black box models

The insights from the black-box models suggest that 
Random Forest performs exceptionally well in terms of 
both accuracy and R2 score, making it a robust choice for 
this task. SVM and MLP also exhibit strong performance, 
particularly in terms of R2 score, indicating their capability 
to capture the variance in the target variable. Gradient 
Boosting demonstrates good accuracy, but its R2 score is 
slightly lower compared to Random Forest, SVM, and 
MLP. KNN, while having a respectable accuracy, shows a 
comparatively lower R2 score, suggesting limitations in 
explaining the variance in the target variable.

Figure 5 presents the ROC of the five models. The 
Receiver Operating Characteristic (ROC) curve and the 
Area Under the Curve (AUC) are significant metrics in 
assessing the performance of classification models. The 
ROC curve provides a graphical representation of the 

trade-off between true positive rate (sensitivity) and false 
positive rate (1-specificity) across various decision 
thresholds. The analysis through the Receiver Operating 
Characteristic (ROC) curves highlighted Random Forest’s 
superior discriminatory ability, as reflected in AUC values 
of 1 for Class 0 and Class 3, 0.96 for Class 1, 0.98 for Class 
2, and 0.99 for Class 4. These results signify Random 
Forest’s effectiveness in classifying instances across 
multiple classes, emphasizing its robustness in handling 
the complexities of the dataset.

Although the random forest model demonstrates its 
ability to predict different classes effectively, it lacks the 
capability to provide explanations for its predictions. To 
address this limitation, we employed explainable AI 
techniques to elucidate the reasoning behind the predictions.
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FIGURE 5. ROC and AUC for different models

Figure 6 illustrates the explanation for a specific 
instance where the predicted class matches the actual class 
(NL to MCI). This explanation clearly outlines the 
contribution of each feature in predicting the transition 
from Mild Cognitive Impairment (MCI) to Dementia, as 
both the actual and predicted classes belong to Class 3. 
The LIME explanation offers valuable insights into the 

model’s decision, highlighting influential features and their 
respective impacts. Positive weights associated with 
features like ‘CDRSB_diff,’ ‘RAVLT_learning_diff,’ and 
‘ADAS11_diff’ indicate their positive influence on 
predicting the transition. Conversely, negative weights for 
features such as ‘RAVLT_forgetting_diff’ suggest a 
counteractive effect.

FIGURE 6. LIME explanation of an individual instance

The identified features, including ‘CDRSB_diff,’ 
‘RAVLT_learning_diff,’ ‘ADAS11_diff,’ and ‘RAVLT_
forgetting_diff,’ bear clinical significance in predicting the 
transition from Mild Cognitive Impairment (MCI) to 
Dementia. An increase in ‘CDRSB_diff’ signifies a 
deterioration in cognitive and functional abilities, aligning 
with expected disease progression. Elevated ‘RAVLT_
learning_diff’ suggests improved learning, potentially 

indicative of effective interventions or compensatory 
mechanisms. A decrease in ‘ADAS11_diff’ reflects 
enhanced cognitive function, hinting at positive responses 
to treatments targeting Alzheimer’s-related cognitive 
decline. The negative change in ‘RAVLT_forgetting_diff’ 
implies reduced forgetting, a critical aspect of memory 
decline. Collectively, these insights offer clinicians 
valuable information for monitoring and understanding the 
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progression from MCI to Dementia, aiding in tailored 
interventions and treatment assessments. These insights 
underscore the relevance of cognitive and clinical 
measurements in the model’s prediction, emphasizing the 
specific factors contributing to its sensitivity in identifying 
the progression from MCI to Dementia.

The SHAP explanation of an instance with predicted 
class and actual class MCI to dementia is given in Figure 
7. The water plot curve uses color differentiation to
represent the individual and cumulative Shapley values for 
each feature in the instance. The blue color corresponds to
the Shapley values for the individual instance, showcasing 
the impact of each feature in isolation on the model’s
prediction. Positive (above the baseline) and negative

(below the baseline) segments indicate the direction and 
magnitude of influence, respectively. On the other hand, 
the red color represents the cumulative Shapley values, 
illustrating the overall contribution of each feature to the 
model’s prediction. Again, positive (above the baseline) 
and negative (below the baseline) segments indicate the 
direction and magnitude of the combined impact. By 
combining both representations in a single water plot curve, 
we can visually assess how each feature contributes 
individually (blue) and collectively (red) to the model’s 
decision for the given instance. This dual-color scheme 
provides a comprehensive understanding of the intricate 
dynamics of feature contributions in the interpretability of 
the model’s predictions.

FIGURE 7. SHAP value of an instance

The global feature importance analysis is performed 
on a RandomForestClassifier using SHAP. The 
TreeExplainer from SHAP is utilized to compute Shapley 
values, representing the impact of each feature on the 
model’s output. The mean absolute Shapley values across 
all instances are then calculated to determine the global 
importance of each feature. The results are sorted, and the 
top features are visualized along with their corresponding 
importance. The summary_plot function generates a bar 
plot illustrating the ranked feature importance, providing 
insights into the relative contribution of each feature to the 
model’s overall predictions. Figure 8 gives the global 
feature importance by considering all features. 

Among the features, ‘CDRSB_cur’ (Clinical Dementia 
Rating Scale - Sum of Boxes at the current visit) emerges 
as the pivotal indicator, encapsulating the comprehensive 

clinical status of dementia. Its prominence lies in assessing 
the overall severity of cognitive decline, with higher scores 
indicating a more advanced stage of the disease. Following 
closely is ‘FAQ_cur’ (Functional Activities Questionnaire 
at the current visit), which delves into the individual’s 
ability to perform daily activities independently, offering 
valuable insights into functional independence. The 
subsequent features, including ‘ADAS13_cur’ and 
‘MMSE_cur’, contribute to cognitive assessment, 
pinpointing specific cognitive domains affected by the 
disease. ‘MMSE_diff’, measuring changes over time, and 
‘ADAS11_cur’, emphasizing memory and language 
domains, further enrich our understanding of cognitive 
progression. The dynamics of ‘CDRSB_diff’ highlight 
shifts in overall clinical symptoms, while memory-related 
features like ‘RAVLT_immediate_cur’ and ‘RAVLT_perc_
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forgetting_diff’ elucidate immediate recall and memory 
retention alterations. Collectively, these features serve as 

crucial markers in unraveling the multifaceted landscape 
of dementia progression and cognitive decline.

FIGURE 8. Global feature importance from SHAP

In the further analysis of the top features for each class, 
‘CDRSB_cur’ emerges as a significant predictor, 
showcasing class-specific trends. The decreasing trend for 
Class 0 (CN) suggests that higher cognitive function is 
associated with a higher likelihood of being classified as 
CN. Conversely, for Class 1 (MCI) and Class 2 (AD), the 
increasing trends indicate that higher values of ‘CDRSB_
cur’ are linked to an elevated probability of being classified 
as MCI or AD, respectively. Additionally, exploring 
‘FAQ_cur,’ the Functional Activities Questionnaire, reveals 
insights into functional abilities. Lower ‘FAQ_cur’ values 
are associated with a higher probability of being classified 
as CN, while increasing values align with a higher 

likelihood of MCI or AD. Figure 9 illustrates these trends 
for the 2 most dominating features. Extending this 
interpretation to the other features for each class allows 
for a comprehensive understanding of the model’s 
perspective on disease progression. Clinically, these 
insights are valuable for timely interventions and close 
monitoring, providing a nuanced approach to patient care 
tailored to different stages of cognitive decline. It’s essential 
to note that while these trends offer valuable associations, 
they do not imply causation, and clinical judgment remains 
paramount in decision-making.

Table 3 gives the observations on the partial 
dependence plot of the feature CDRSB_cur and FAQ_cur.

FIGURE 9:  Partial dependence plot for CDRSB_cur and FAQ_cur
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TABLE 3. Observations on the partial dependence plot of the feature CDRSB_cur and FAQ_cur
Class Trend with 

‘CDRSB_cur’
Interpretation

0 (CN) Decreasing Higher values of ‘CDRSB_cur’ are associated with a decreased predicted probability 
of belonging to class CN.

1 (MCI) Increasing Higher values of ‘CDRSB_cur’ are associated with an increased predicted probability 
of belonging to class MCI.

2 (AD) Increasing Higher values of ‘CDRSB_cur’ are associated with a higher predicted probability of 
belonging to class AD.

3 (NL to MCI) Fluctuating The relationship between ‘CDRSB_cur’ and the predicted probability of NL to MCI 
transition is more complex and fluctuates. Further analysis may be needed.

4 (MCI to AD) Increasing Higher values of ‘CDRSB_cur’ are associated with an increased predicted probability 
of transitioning from MCI to AD.

Class
Trend with 
‘FAQ_cur’ Interpretation

0 (CN) Decreasing Higher values of ‘FAQ_cur’ are associated, on average, with a decreased predicted 
probability of belonging to class CN.

1 (MCI) Fluctuating
The relationship between ‘FAQ_cur’ and the predicted probability of belonging to 
class MCI is more complex, with some peaks and valleys. Further analysis may be 

needed.

2 (AD) Increasing Higher values of ‘FAQ_cur’ are associated, on average, with a higher predicted 
probability of belonging to class AD.

3 (NL to MCI) Fluctuating
The relationship between ‘FAQ_cur’ and the predicted probability of NL to MCI 

transition is complex, with some peaks and valleys, similar to Class 1. Further 
analysis may be needed.

4 (MCI to AD) Decreasing Higher values of ‘FAQ_cur’ are associated, on average, with a decreased predicted 
probability of transitioning from MCI to AD.

DISCUSSION

The integration of time-aware modeling and Explainable 
AI techniques represents a synergistic approach to enhance 
Alzheimer’s disease progression prediction. Time-aware 
modeling involves not only considering the current values 
of key predictors but also incorporating the temporal aspect 
by evaluating the rate of change in these predictors over 
time. With the use of this methodology, a deeper 
understanding of the structure and progression of the 
disease can be obtained, facilitating the identification of 
minute changes that might point to the beginning or 
advancement of Alzheimer’s disease.

It is apparent from the analysis of several black-box 
models, including Multilayer Perceptron (MLP), Random 
Forest, Support Vector Machine (SVM), K-Nearest 
Neighbors (KNN), Gradient Boosting, and Random Forest, 
that the models behave much better when time-aware 
features are included. The confusion matrix heatmaps, ROC 
curves, and R2 scores highlight Random Forest as the top 

performer, emphasizing its ability to capture the 
complexities of Alzheimer’s progression. Despite the 
robust predictive capability of Random Forest, its black-
box nature necessitates the incorporation of Explainable 
AI techniques. LIME and Shapley values serve this purpose 
by offering interpretable insights into the decision-making 
process of the model. ‘CDRSB_cur’ stands out as a critical 
characteristic, suggesting that it plays an important part in 
predicting the course of the disease. The examination of 
global feature importance highlights the relevance of 
‘CDRSB_cur’ and presents additional significant 
contributions, including ‘FAQ_cur’, ‘ADAS13_cur’, and 
‘MMSE_cur’.

The rate of change of ‘CDRSB’ (‘CDRSB_diff’) is 
significant as it indicates how time-aware characteristics 
affect the interpretability of the model. Identifying the 
time-related component of clinical measurements improves 
the model’s ability to identify small changes over time, 
leading to a more thorough knowledge of the course of 
Alzheimer’s disease. This increases prediction accuracy 



17251724

and makes it easier to create an understandable model. The 
patterns in partial dependence plots for ‘FAQ_cur’ and 
‘CDRSB_cur’ that have been found across classes further 
highlight how important these traits are in predicting 
cognitive decline. The interpretability of the model is 
enhanced by including both the current values and the rate 
of change in important variables over time. This gives 
physicians practical insights. By bridging the gap between 
clinical application and prediction accuracy, this method 
opens the door to more effective interventions and 
individualized care in the context of Alzheimer’s disease 
improvement.

CONCLUSION

This study concludes by addressing the urgent need for 
reliable and understandable models for projecting the 
course of Alzheimer ’s disease. A complex and 
therapeutically applicable predictive model is developed 
by the merging of Explainable AI approaches with time-
aware modelling. Random Forest emerges as the best 
performer in terms of accuracy, ROC curves, and R2 scores 
when several black-box models, such as K-Nearest 
Neighbors, Support Vector Machine, Random Forest, 
Gradient Boosting, and Multilayer Perceptron, are 
analyzed. In the context of Alzheimer’s disease, this 
research assists in narrowing the gap between interpretability 
and predictive accuracy. Time-aware modelling, 
Explainable AI methods, and an emphasis on important 
predictors provide a comprehensive knowledge of the 
disease’s dynamic nature. The results may open the door 
to more efficient, prompt, and tailored interventions, 
thereby raising the standard of living for Alzheimer’s 
patients and their families. This research offers a basis for 
the creation of transparent and clinically applicable models 
for the prediction of Alzheimer’s disease progression as 
artificial intelligence in healthcare continues to evolve.
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