
1849PB

Jurnal Kejuruteraan 36(5) 2024: 1849–1857 
https://doi.org/10.17576/jkukm-2024-36(5)-06

Development and Accuracy Evaluation of a YOLOv4-Based Food Detection Model 
for Smart IoT Refrigerators

Muhammad Faiz Bukhori*, Lee Xiao Xian, Nasharuddin Zainal & Seri Mastura Mustaza

Department of Electrical, Electronic, and Systems Engineering,  
Faculty of Engineering & Built Environment,  

Universiti Kebangsaan Malaysia

*Corresponding author: mfaiz_b@ukm.edu.my

Received 24 January 2024, Received in revised form 28 April 2024
Accepted 28 May 2024, Available online  30 September 2024

ABSTRACT

Efficient management of food stored in conventional refrigerators poses notable challenges, primarily due to the lack 
of advanced features required for inventory tracking. The absence of timely alerts further complicates users’ 
efforts to monitor their food supplies, resulting in understocking, overbuying, spoilage, and wastage. To tackle these 
challenges, this work proposes a computer vision-based approach to track food items, implementing an 
intelligent inventory management system for IoT refrigerators. The goal is to reduce food wastage and enhance food-
stocking efficiency. A YOLOv4 object detection model was trained on a custom dataset featuring common food items in 
Malaysian households. The model achieved a 0.8041 average loss, 100% mAP, and 86% average IoU during training. 
The trained model was subsequently deployed on a low-power single-board computer, implementing an autonomous 
and real-time inventory tracking system for IoT refrigerators. The system exhibited 93% accuracy, and macro-
average scores of 0.94 for precision, 0.93 for true positive rate (TPR), 0.01 for false positive rate (FPR), 0.93 for 
F1 score, and 0.99 for true negative rate (TNR). Crucially, the system recognized low-stock events and sent alerts 
to users through the Telegram instant messaging platform, facilitating just-in-time restocking. This intelligent 
inventory management system offers a practical solution to address the limitations of conventional refrigeration 
systems and represents a transformative step towards sustainable food consumption.
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INTRODUCTION

In the modern household, the refrigerator serves as an 
essential cornerstone, facilitating the storage and 
preservation of food. While adequate in these vital 
functions, conventional refrigerators pose a challenge in 
effectively managing food inventory due the lack of 
advanced features required to keep users informed about 
inventory levels. Users are required to perform tedious 
manual checks, leading to issues such as understocking, 
overbuying, spoilage, and wastage.

Extensive studies have underscored the impact of these 
stocking inefficiencies. Malaysians reportedly discard 
4,081 tonnes of edible food daily, enough to feed 3 million 
people (Meikeng 2022). A survey by Phooi et al. (2022) 

revealed that 32% of the Malaysian respondents discarded 
food due to expiration, 30% because of spoilage, and 17% 
cited concerns about freshness. Reducing food waste is 
also a crucial aspect of responsible consumption (United 
Nations 2022), therefore the urgency for innovative 
solutions cannot be overstated. Despite the availability of 
smart refrigerators equipped with food recognition 
technologies (Samsung 2020), they can cost up to six times 
higher than that of the average refrigerator (Samsung 
2023). This affordability gap limits the accessibility of 
smart fridges to a broader user base, hindering widespread 
adoption.

This paper proposes an intelligent inventory 
management system based on computer vision for Internet-
of-Things (IoT) refrigerators. The proposed system not 
only autonomously monitors but also provides real-time 
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inventory information, addressing the limitations of 
conventional refrigeration systems. It implements a 
proactive approach of sending low-stock alerts, facilitating 
just-in-time restocking and minimizing food wastage. 
Recent advances in deep learning (Athriyah et al. 2022) 
have also paved the way for low-cost and low-power 
implementations on edge devices, potentially reducing the 
costs of ownership.

Buzzelli et al. (2018), Khan et al. (2019), Avinash et 
al. (2020), and Jain et al. (2021) applied image classification 
techniques to identify vegetables and fruits in their smart 
fridge implementations. However, since image classification 
inherently assigns a single label to an entire image, 
recognizing individual food items in a fridge that typically 
stores a diverse range of items can be a technical challenge. 
While image segmentation had been applied to distinguish 
individual food items in an image (Dumitrescu et al. 2022), 
it required pixel-level annotations that are both time-
consuming and resource-intensive. In contrast, Kumar et 
al. (2022) and Lee et al. (2021) implemented object 
detection algorithms which enabled the detection of 
multiple food items in an image. While Kumar’s system 
offered automatic ordering of food items to an e-commerce 
site, Lee’s smart fridge implementation did not feature 
restocking alerts.

Many implementations of smart fridge inventory 
management were also based on open-source food datasets, 
such as VegFru, FIDS30, Combined, Fruits360, Food-101, 
and Food2k (Bossard et al. 2014; Buzzelli et al. 2018; Jain 
et al. 2021; Min et al. 2023). These datasets, however, do 
not feature bounding box annotations, making them 
unsuitable for applications that require multiple object 
detections in a single image. On the other hand, the large-
scale object detection datasets ImageNet, MS COCO, and 
PASCAL VOC contain various other everyday object 
classes (Deng et al. 2009; Dong et al. 2021; Lin et al. 2014). 
Relying on these datasets, however, might result in less 
accurate outcomes when specifically applied to food items 
in Malaysian households due to regional variations in 
packaging and labelling. Hence, there is a genuine need to 
develop a custom image dataset of Malaysian food items.

The rest of this paper is organized as follows: the 
Methodology section explains the development of the 
custom image dataset, followed by details on model 
training, and subsequently, model deployment and system 
implementation. The Results section evaluates the system’s 
real-time performance, including its user notifications of 
stock count and low-stock alerts.

METHODOLOGY

SYSTEM OVERVIEW

The object detection approach in this work is based on the 
efficient You Only Look Once (YOLOv4) algorithm 
(Bochkovskiy et al. 2020), which employs convolutional 
neural networks for real-time detection of multiple objects 
in a single image. Benchmark studies have reported that 
YOLO models consistently offer high accuracies and fast 
inferences (Ekanayake et al. 2019; Kim et. al 2020; 
Ariyanto & Purnamasari 2021; Wang et al. 2021), making 
them suitable for low-latency applications.

The YOLOv4 object detection model trained in this 
work was deployed on the low-power single-board 
computer Raspberry Pi (Raspberry Pi 2023), ensuring a 
cost and energy-efficient system without compromising 
speed and processing power. A web camera connected to 
the single-board computer captures a live video feed of the 
food items in the fridge, which the model utilizes for object 
detection. During operation, the Raspberry Pi also runs an 
instant notification program that sends real-time inventory 
updates and low-stock alerts to the system user.

DATASET DEVELOPMENT

An image dataset comprising 5 classes was created 
specifically for training the object detection model in this 
work. These classes correspond to 5 commonly found food 
items in Malaysian households. Following the YOLOv4 
dataset format, each object within the dataset was assigned 
a unique class ID that corresponds to a class name, as 
detailed in Table I. While the dataset’s size is currently 
insufficient for practical applications, it functions as an 
initial demonstration, laying the foundation for more 
extensive and refined future work.

TABLE I. Object classes in a custom image dataset of 5 
common food items in Malaysian households

Class ID Class Name
0 “Chocolate”
1 “Egg”
2 “Milk”
3 “Orange”
4 “Yoghurt”

A total of 200 images were initially acquired, 
consisting of random combinations of the dataset classes. 
Figure 1 shows the photography setup used to capture the 
dataset images, following the practices outlined by Tariq 
et al. (2022). A high-definition web camera with a 
resolution of 3648×1680 pixels was positioned 35 cm 
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above the plain background. To minimize shadows, a soft 
white LED light was mounted behind the camera, 
illuminating the photographed items from above.

FIGURE 1. The photography setup used to capture 200 dataset 
images of common food items in Malaysian households

The 200 images were then divided into a training set 
and a validation set, based on the conventional 80:20 ratio 
(Dunford et al. 2014; Xun et al. 2021). This resulted in 160 
training images, and 40 validation images. Subsequently, 
image augmentation techniques were randomly applied to 
the training images to increase the training set size. These 
techniques included flipping, cropping, rotation, shearing, 
saturation, and exposure adjustments (Haque et al. 2022; 
Jubayer et al. 2021; Shandilya et al. 2023), effectively 
tripling the size of the training set to 480 images. All of 
the images were then downsized to 640×640 pixels to 
reduce model training time without significantly affecting 
its performance (Shandilya et al. 2023). The images were 
subsequently annotated and labelled using the Roboflow 
image-annotating platform (Roboflow 2023). Figure 2 
shows an example of an annotated image containing one 
chocolate, six eggs, one milk, and two oranges. A total of 
150 labels and annotations were created for each class, 
following the established practices to ensure a balanced 
dataset (Diab et al. 2021; Cho et al. 2015; Shahinfar et al. 
2020; Meliboev et al. 2022).

FIGURE 2. An example of image labelling and annotation 
using the Roboflow platform

FIGURE. 3. An example of an image label and annotation file 
generated by the Roboflow platform

Figure 3 shows an example of an image annotation 
file generated by Roboflow. The stated class ID for the item 
in the bounding box is “4”, which indicates that the item 
class is “Yoghurt”. The item’s normalized x-centre and 
y-centre coordinates are 0.4117 and 0.4081, respectively, 
while the normalized width and height of the bounding 
box are 0.2053 and 0.4383, respectively.

MODEL TRAINING

The object detection model developed in this work was 
trained using Darknet, an open-source neural network 
framework written in C and Compute Unified Device 
Architecture (CUDA) for real-time object detection 
(Alexeyab 2016; Bochkovskiy et al. 2020; Redmon 2016). 
Darknet facilitates efficient training and implementation 
of YOLO architectures, supporting Graphics Processing 
Unit (GPU) acceleration for rapid training and real-time 
inferences.

Model training was conducted on Google Colaboratory, 
a cloud-based computing platform that provides secure 
access to GPUs (Google Research 2023; Rahma et al. 
2021). The model underwent training for a total of 15,000 
epochs, with mini-batch size of 64 samples, and a learning 
rate of 0.0013. Input size was fixed to be 416×416 pixels. 
At every 1,000 epochs, the trained weights were backed 
up, together with the associated metrics of average loss, 
mean average precision (mAP), and intersection over union 
(IoU).
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FIGURE 4. Average loss, mAP, and average IoU attained by the model throughout training

Figure 4 shows the average loss, mAP, and average 
IoU scores attained throughout the model training. The 
average loss significantly dropped to below 2.0 by the 
2,000th epoch and remained stable below 1.0 after the 
8,000th epoch, indicating effective learning on the dataset. 
This is further supported by the average IoU scores which 
fluctuated around 84% from 2,000th epoch onwards, and 
the mAP scores which remained at 100% throughout much 
of the training. The training was halted at the 15,000th 
iteration because the average loss showed no further 
decrease. The model was identified as optimally trained at 
the 9,000th epoch, marked by the second-lowest average 
loss of 0.8041, the highest mAP of 100%, and the second-
highest average IoU of 86%. These optimized weights were 
subsequently downloaded for model deployment and 
system implementation.

MODEL DEPLOYMENT AND SYSTEM IMPLEMENTATION

The trained model was subsequently deployed on a 
Raspberry Pi 4 Model B single-board computer, 
equipped with a 32 GB storage memory. Figure 5 
displays the front view and side view of the system 
implementation, comprising a Logitech C270 high-
definition web camera and a tactile push-button switch 
interfaced to the Raspberry Pi. The camera was positioned 
above the tray where food items would be placed on, 
ensuring that the camera’s field of view covered the 
entire tray.

SOFTWARE DESIGN

The headless system is remotely administered through a 
local wireless network using the secure shell (SSH) 

protocol. An efficient Python program, running in the 
Raspberry Pi, utilizes OpenCV functions to process images 
and implement the trained model for identifying food items 
placed on the tray. The program operates in a loop, starting 
by loading the trained model from memory. It then checks 
the status of the push-button, which is mechanically linked 
to the fridge’s door. Opening the door presses the push-
button, indicating a probable change in inventory levels.  

FIGURE 5. The front view and the side view of the smart IoT 
fridge implementation. The camera’s field of view covers the 

entire tray where the food items are placed on

This triggers the program to capture a single image 
from the webcam. A single forward pass of the image is 
then sent through the trained model, where each object 
detection (prediction) receives a confidence score, a class 
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ID, and a bounding box. The program then checks if the 
prediction confidence score surpasses a predetermined 
confidence threshold. If this condition is met, the program 
proceeds to draw the predicted bounding box around the 
identified item, and attaches its class name. Following this, 
program updates the count of each identified item, checking 
if the levels are lower than the user-defined minimum 
levels. It then sends the augmented food image and the 
stock count to the user via Telegram (Telegram 2023), 
along with a low-stock alert if the levels fall below the 
minimum thresholds. Figure 6 summarizes the program 
flow, showing how it identifies and quantifies all items 
before sending the information to the user.

FIGURE 6. The program flow of real-time inventory tracking 
running in the Raspberry Pi

RESULTS AND DISCUSSION

The real-time performance of the deployed model was 
tested on 18 different instances of food trays, at varying 
confidence thresholds from 0.1 to 0.9. Each instance of the 
food trays consisted of random combinations of the 5 food 
classes listed in the dataset, along with other random items 

not in the dataset and never learned by the model (referred 
to as the “Other” class). The model is considered to have 
recognized any of the items as this “Other” class if no 
bounding box (prediction) is generated. Collectively, these 
instances represent images that the model has never 
encountered during training.

FIGURE 7. An augmented image and inventory information 
generated by the system for one instance of the food tray. All 

items were correctly identified and quantified

FIGURE 8. The system correctly identified all three cartons of 
milk of different positioning orientations, and generated low-

stock alerts for chocolate and yoghurt
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Figure 7 and Figure 8 show examples of inventory 
information generated and delivered by the system for two 
different instances of the food tray. In both figures, the 
system accurately identified and localized all the food items 
in the fridge, as evident from the bounding boxes, class 
labels, and confidence scores augmented on the image of 
each identified item. Also in both cases, the confidence 
scores of all the detections exceeded 0.9. Additionally, the 
system correctly quantified all of the items, displaying the 
inventory count on the top-left corner of each image. 
Notably, in Figure 8, the system correctly identified all 
three cartons of milk despite their different positioning 
orientations. The system was also able to recognize low-
stock events, generating low-stock alerts for chocolate and 
yoghurt, both of which registered zero quantity.

FIGURE 9. The system mistakenly identified the green apple 
— a random unlearned item not in the dataset — as an orange 

with a relatively low confidence score of 0.5112

In Figure 9, a random item of the “Other” class — a 
green apple — was placed in the tray. Since green apples 
were not included in the dataset used to train the model, 
ideally, the system should not recognize them, resulting in 
no bounding box. However, it can be seen that the system 
incorrectly identified the green apple as an orange, albeit 
with a relatively low confidence score of 0.5112. This 
misclassification can be attributed to the closely similar 
shape and size of both items, and can be prevented by 
setting a higher confidence threshold in the program. For 
instance, establishing a confidence threshold of 0.9 would 
ensure that the system disregards the misclassified green 
apple, given its lower confidence score of 0.5112.

FIGURE 10. The confusion matrix for detections generated by 
the system when tested against 18 different instances of food 

trays at 0.9 confidence threshold

Figure 10 displays the confusion matrix for detections 
generated by the system when tested against 18 different 
instances of food trays, at 0.9 confidence threshold. Given 
that this was a multi-class classification, the One-vs-Rest 
(OvR) method (Hong et al. 2006; Wu et al. 2006) was 
adopted to evaluate the system’s performance. This 
approach involves converting the multi-class classification 
into multiple binary classifications. Using the example of 
the chocolate class, its true positive (TP) value is 15, 
indicating instances when the system correctly identified 
chocolates. The chocolate class also has a true negative 
(TN) value of 74, corresponding to instances when the 
system correctly identified non-chocolate items. It can also 
be seen that there was one instance when the system 
mistakenly identified an item from the “Other” class as a 
chocolate, giving the chocolate class a false positive (FP) 
value of 1. Finally, the system did not fail to detect any 
chocolate item whenever it was present in the fridge, 
resulting in a false negative (FN) value of zero.

From the confusion matrix at each confidence 
threshold, six macro-average performance metrics can be 
determined: precision, true positive rate (TPR), false 
positive rate (FPR), true negative rate (TNR), F1 score, 
and accuracy (Grandini et al. 2020; Koo et al. 2022; 
Prabowo et al. 2009; Sun et al. 2001).  Table II summarizes 
the system’s macro-average performance at confidence 
thresholds ranging from 0.1 to 0.9. It can be observed that 
for confidence thresholds from 0.1 to 0.3, the system’s 
performance remained relatively unchanged. These metrics 
then gradually increased with the increase of the confidence 
threshold up to 0.7, before plateauing at confidence 
thresholds of 0.8 and 0.9. However, the false positive rate 
(FPR) scores showed a contrasting trend, decreasing with 
the increase in the confidence threshold. At 0.8 and 0.9 
confidence thresholds, the macro-average values of 
precision, TPR, F1 score, TNR, and accuracy reached their 
maximum, while FPR reached its lowest. This indicates 
that the 0.8 and 0.9 confidence thresholds are the optimal 
confidence thresholds for the system implementation 
(Grandini et al. 2020).
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TABLE 2. The system’s macro-average performance at confidence thresholds ranging from 0.1 to 0.9. Overall performance 
improves as the confidence threshold of the system is increased

Confidence threshold Macro-average Accuracy
Precision  TPR FPR F1 score TNR

0.1 0.87 0.84 0.03 0.78 0.97 0.84
0.2 0.87 0.84 0.03 0.78 0.97 0.84
0.3 0.87 0.84 0.03 0.78 0.97 0.84
0.4 0.88 0.86 0.03 0.81 0.97 0.86
0.5 0.89 0.87 0.03 0.83 0.97 0.87
0.6 0.92 0.90 0.02 0.88 0.98 0.90
0.7 0.92 0.91 0.02 0.90 0.98 0.91
0.8 0.94 0.93 0.01 0.93 0.99 0.93
0.9 0.94 0.93 0.01 0.93 0.99 0.93

Table II also demonstrates that increasing the 
confidence threshold enhances the system’s selectivity in 
making predictions by filtering out weak predictions. 
Consequently, as the confidence threshold is increased, the 
system tends to reduce instances of false positives (FP) 
and false negatives (FN), while increasing true positive 
(TP) predictions, resulting in higher overall accuracy. 
Ideally, the inventory tracking system should minimize 
both false positives (FP) and false negatives (FN) while 
maximizing true positives (TP). Maximizing true positives 
(TP) ensures that the system correctly identifies and 
accurately accounts for all items present in the fridge. 
Minimizing false positives (FP) and false negatives (FN) 
ensures that the system does not misclassify or detect items 
that are not actually there, which can lead to inaccurate 
inventory counts and false restock alerts.

In this work, the deployed system achieved 
commendable macro-average scores for precision, true 
positive rate (TPR), false positive rate (FPR), F1 score, 
and true negative rate (TNR) at its optimal confidence 
thresholds of 0.8 and 0.9. Specifically, the macro-average 
scores were 0.94 for precision, 0.93 for TPR, 0.01 for FPR, 
0.93 for F1 score, and 0.99 for TNR. Additionally, the 
model did not exhibit overfitting during training, and 
demonstrated the capability to generalize to new, unseen 
data. This was highlighted by the system’s remarkable 
accuracy of 93% when tested against the 18 instances of 
food trays at its optimal confidence thresholds. These 
findings indicate that the trained model is robust and 
reliable for deployment.

CONCLUSION

The primary contribution of this paper is the development 
of a robust and automated inventory management system 
for smart fridges, offering an efficient food storage solution 

tailored for Malaysian households. The system delivers 
real-time stock count updates and low-stock alerts, 
achieving an overall object detection accuracy of 93%. 
Furthermore, the establishment of a custom object detection 
dataset featuring common Malaysian food items adds a 
unique dimension to this work. 

To improve its practical usability, the dataset could be 
expanded to include hundreds of other food items 
commonly found in Malaysian households. A better 
strategy is also needed to facilitate the seamless training 
of the model on new additions to the dataset. Furthermore, 
there is an opportunity for the system to incorporate 
predictive analytics capable of forecasting demand based 
on past inventory trends, which could be integrated with 
an online shopping functionality. This integration would 
also enhance the overall user experience.
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