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ABSTRACT

The calculation of minimum determinant plays a crucial role in fulfilling the determinant criterion of a certain 
code design in space time trellis code. In the heuristic optimization of code construction, the minimum determinant is 
derived via a variant of the branch and bound algorithm. Although the algorithm is relatively efficient, it is not 
optimized in terms of the pruning strategy. Search space is pruned when the upper bound is exceeded. The upper 
bound restricts the area of the search space by acting as a minimize agent.  No attempt is made on discerning the 
potential of different structures within the search space. This paper proposes a new pruning approach to improve the 
computational efficiency of finding the minimum determinant for a particular genera-tor matrix G. It builds upon the 
idea of minimal complete cycles. They are the smallest paths that begin and ends with zero. By capitalizing on the mini-
mum complete cycle of the search tree, the structure with the highest potential in the search space can be 
identified. Consequently, it helps the search process to differentiate subtrees in their capacity of yielding a 
solution. Search can be focused on a certain subtree while others are pruned altogether. This enables 
approximately 45% reduction of the overall spatial and temporal cost. Despite its potential, the pruning method is 
inherently probabilistic. There is a 0.0357 risk that it could provide an erroneous minimum determinant. 
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INTRODUCTION

Data rate and transmission reliability are two of the most 
important factors in a communication system. To achieve 
a more reliable high data rate and low transmission error 
over the wireless channel, efficient modulation and coding 
schemes must be developed. However, this scheme has 
limitations due to issues such as multi-path fading, 
interference, and noise. To address this issue, the Space 
Time Trellis Code technique has been proposed. 

The concept was introduced by (Tarokh et al. 1998) 
which are used in slow Rayleigh fading channel.In Multi-
Input Multi-Output (MIMO) Rayleigh fading channels, 
Space Time Trellis Code (STTC) achieves both diversity 
and coding gains. A carefully designed STTC using a good 

design criteria helps to maximize both advantages.The 
design criteria normally consist of the rank and determinant 
criteria (RDC)(Tarokh et al.1998). By satisfying these two 
criteria, the process of code deisgn is optimized. The 
diversity gain is determine by the minimum rank of the 
distance matrices while minimum distance of the distance 
matrices is used to determine the coding gain.

The optimization of code design (Ata & Altunbas 
2018; Harun et al. 2013) is one of most heavily researched 
topic in Space Time Trellis Code. There are many ways to 
optimize code design but it often revolves around the usage 
of the design criteria. The design criteria are practically a 
set of governing factors that determine the manner of which 
the performance of codes can be maximized under a 
particular situation. For instance, in the case of two 
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transmitters and one receiver (2T-1R), the coding gain is 
optimal when the generator matrix G has full rank. 

Early code design that uses rank criteria are (Banerjee 
& Agrawal 2014) and distance criteria (Viland et al. 2010). 
Other code design criteria that are being used is the 
determinant criterion. It requires the minimum determinant 
of the generator matrix G to be found. Finding the minimum 
determinant of a particular generator matrix G via the tree 
based approach is a practical way of complying with the 
determinant criterion in code design. The earliest tree based 
approach (Fukuda et al. 2006) relies on branch and bound 
(Jiang et al. 2018; Wang 2018) with the breadth first search 
as its traversal strategy. Here, pruning strategy is applied 
when the minimum determinant found at a node in the 
search tree exceeds the upper bound or largest value that 
is discovered previously during the search process. This is 
further improved with depth first search (Harun 2010) 
where lower search cost is made computationally feasible. 
Latest research which is the minimal cycle method (MCM) 
(Harun et al. 2013) improves the tree based approach by 
introducing a new way of calculating the initial upper 
bound (IUB). 

The remainder of this paper is organized as follows: 
Methodology reviews the existing methods for computing 
minimum determinants in space-time trellis codes and also 
introduces the proposed Optimal Subtree Pruning (OSP) 
algorithm. Experimentation presents the experimental 

setup and compares the performance of OSP with MCM.
Results and discussion discusses the practical implications 
of the findings and potential directions for future research. 
Finally, in conclusion it concludes the paper with a 
summary of the key contributions.

DOMINANCE

In heuristic search, the employment of dominance or 
dominant rules (Büyüktahtakın 2022, 2023; Khoudi & 
Berrichi 2020) is a compelling strategy in pruning. The 
strategy basically postulates the existence of a path p(i), 
of which superior or at least similar solutions can be found 
when compared to another path p(j). In this case, it is said 
that p(i) is dominant over p(j). To illustrate dominance, 
imagine the following example (Figure 1). Here, two paths 
are competing for dominance: p(i) = 0 → 1 and p(j) = 0 
→2 where the solutions for both are (a) and (b) respectively. 
Now, the solutions or minimum determinants for (a) are 4, 
4, 8 while (b) are 8, 16, 8. Given that smaller minimum 
determinants are better than larger ones, it is quite easy to 
see that the series of solutions in (a) from p(i) are superior 
or at least similar to the solutions in (b) from p(j). If this 
is so, then it can be surmised that p(i) is dominant over 
p(j).

FIGURE 1. Dominance between path p(i) and p(j)

PROBLEM STATEMENT

Although MCM enables a tighter initial upper bound for 
the search process, the approach itself is not fully 
optimized. Further introspection would indicate that MCM 
does not discriminate between the different minimum 
complete cycles within the subtrees in considering their 

subsequent impact. That is, the method is not cognizant 
upon the potential of dominance in pruning the search 
space. Contemplating upon these minimum complete 
cycles, it is not implausible to assume that for a tree with 
different subtrees, there exists one that is dominant over 
the rest. Nevertheless, this possibility is ignored altogether 
by MCM. The pruning mechanism is unable to discriminate 
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between varying subtrees within the search space that offer 
different potentials in yielding a solution for the minimum 
determinant (Figure 2). In light of this, the paper proposes 
a better pruning strategy.

FIGURE 2. Weakness of pruning mechanism

METHODOLOGY

MINIMAL CYCLE METHOD (MCM)

In the tree based approach, the upper bound (UB) is initially 
set to infinity when the search starts. This implies that until 
the upper bound holds a finite value, the pruning mechanism 
of the tree based approach cannot be performed. As such, 
pruning takes time to commence because it requires the 
search to progress sufficiently before the upper bound can 
be updated with a valid value.  To solve this problem, MCM 
would traverse the minimal complete cycles within the 
search tree prior to the actual search. These cycles mark 
the shortest path that begins and ends with zero. The 
minimum determinants are calculated at these cycles such 
that one of them can be chosen as the initial upper bound. 
This way, the initial upper bound is no longer set at infinity 
when the search is initiated. Instead, it contains a value 
that can be immediately used for pruning in the search 
process. This significantly reduces the computational 
complexity of the search.

SUBTREE PRUNE AND REGRAFT (SPR)

Among the pruning approaches, a rather intriguing method 
is the subtree prune and regraft (SPR), which is employed 
to determine phylogenetic relationships (Reichler et al. 
2021) in molecular biology. By measuring the number of 
operations involved in transforming one version of a tree 
to another, the relationship between different trees is 
ascertained. SPR consists of three main steps: selection, 
pruning and attachment. For the sake of illustration, 
consider a simple example below (Figure 3). 

1. Selection

In this step, a subtree is selected. By convention, it is
randomly performed (Atkins & McDiarmid 2019). In
the example, the subtree from node 1 is selected.

2. Pruning

Once the subtree is chosen, it is pruned from the tree.
As shown, the subtree that is attached to node 1 is
disconnected entirely from the tree.

3. Attachment

The pruned subtree is attached to different parts of the
tree. Here, the subtree from node 1 is attached to node
2. This creates a new variation of the tree.

FIGURE 3. Selection, pruning and attachment in SPR

Partially inspired by SPR, the optimal subtree pruning 
(OSP) is devised. Generally speaking, OSP only applies 
the selection and pruning process. However, it must be 
noted that the selection process in OSP is not random but 
driven by the discovery made by the minimal cycle method 
(MCM). Furthermore, the pruning process in OSP is an 
inverse of the one in SPR. Instead of pruning the selected 
subtree, the other subtrees within the tree are removed to 
forge a new version of the search space. It is hypothesized 
that the optimal subtree, the one with the best minimal 
complete cycle, is dominant over the other subtrees.
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In other words, the minimum determinant that can be 
found within the optimal subtree would be better, or at least 
as good as the ones in the other subtrees. Reasoning from 
this perspective, the other subtrees should be pruned 
altogether. This would allow an optimization of the search 
process that is far superior to MCM. There is still a caveat 
to the proposed approach. Given its heuristic nature, OSP 
is expected to exhibit a certain extent of acceptable error. 
Nevertheless, the complexity reduction that can be attained 
through OSP should outweigh the propensity of error as a 
whole.

OPTIMAL SUBTREE PRUNING (OSP)

The optimal subtree pruning (OSP) builds upon the idea 
in the minimal cycle method (MCM). In MCM, the 
minimum complete cycles are used to determine the initial 
upper bound of the search. OSP goes a step further by 
utilizing them to determine which subtree is optimal within 
the search space. The algorithm is shown in (Figure 4).

FIGURE 4. Algorithm of optimal subtree pruning

The algorithm accepts the generator matrix G and total 
state N as inputs. Once these are received, the algorithm 

constructs the corresponding minimal complete cycles in 
accordance to the number of states N. If there are N states, 
then N-1 minimal complete cycles are generated. Similar 
to MCM, the minimum determinant at each of the cycle is 
calculated and then analyzed with one another. The minimal 
complete cycle with the smallest minimum determinant 
that is larger than zero is chosen as the representative. If 
none of the value fits this requirement, then the optimal 
subtree pruning cannot be enforced. On the other hand, if 
there are more than one minimal complete cycle with the 
smallest minimum determinant, then the initial one is given 
priority and chosen.

As for the pruning strategy (Krishnamoorthy 2015; 
Prasser et al. 2016), the algorithm nominates the subtree 
with the ‘chosen’ minimal complete cycle as the optimal 
subtree (Hirakawa et al. 2017). Thus, search would proceed 
only on this optimal subtree. For the other subtrees that are 
related to the non-chosen minimum determinant, they are 
pruned completely. In other words, the search mechanism 
would not even consider them.

To understand the approach better, observe the given 
illustration (Figure 5). Three minimal complete cycles are 
generated for the search tree of the 4 state 4x2 generator 
matrix G. The minimum determinant for each minimal 
complete cycle is 0.0, 8.0 and 4.0 respectively. Among 
them, the last complete cycle with the value of 4.00 is the 
one with the lowest non-zero value. It is therefore chosen 
as the minimal complete cycle. Not just that, the portion 
related to it becomes the optimal subtree. This implies that 
the other subtrees are deemed non-optimal. In effect, they 
are pruned completely. The search would not even consider 
other branches that are related to these non-optimal subtrees 
and would only continue at the optimal subtree.

To sum it up, OSP comprises of three main stages 
(Figure 6). The first stage is the generation stage which 
involves the generation of all minimal complete cycles 
within the search tree. This is followed by the selection 
stage that determines the optimal subtree by analyzing the 
minimal complete cycle. Finally, the process concludes 
with the pruning stage that ceases the search at all the non-
optimal subtrees and proceeds only at the optimal subtree.

The pruning outcome is highly efficient. It avoids the 
need to traverse a considerable portion of the search space. 
However, this benefit often comes with a price. Theoretically 
speaking, there is a risk that the aggressive pruning method 
might interfere with the outcome for the search. Comparison 
between several research work is shown in Table 1. 
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FIGURE 5. Conceptualization of Optimal Subtree Pruning

FIGURE 6. Main Stages of Optimal Subtree Pruning

TABLE 1. Comparison between several research work

Research 
work Algorithm Basis Computational 

Complexity
Minimum determinant 

accuracy

Error 
Probability 
Reduction

Practical Implications

Subtree 
Prune and 
Regraft

Selection, pruning 
and reattachment 
of subtrees

Moderate, not 
specifically 
designed for 
determinant 
computation

Moderate, random 
selection impacts 
accuracy

Moderate Useful in Phylogenetic 
studies

Minimal 
Cycle 
Method

Uses minimal 
complete cycle to 
determine intial 
upper bound

High, due to 
non discrimitive 
pruning

High, but may include 
non optimal  subtrees

High Initial upper bound are 
defined before search

Optimal 
Subtree 
Pruning

Select and prunes 
all non optimal 
subtrees based on 
lowest minimum 
determinant value

Significantly 
reduced due to 
targeted pruning.

High, optimal subtree 
selection ensures 
accuracy

High Enhance 
communication 
performance, energy 
efficiency, and real 
time implementation

EXPERIMENTATION

The experimentation is done on an intel i3 processor of 
4GB RAM with Lubuntu as the OS. To conduct the 
experimentation, the entire 65536 variations of a 4 state 
4x2 generator matrix are generated via the JAVA 

programming language. JAVA is used instead of the 
conventional Matlab due to its flexibility in  forming the 
graph data structure. Matlab mainly relies on the array data 
structure and does not offer the same versatility.
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 The research uses communication model that involves 
2 transmit antenna and 1 receiver antenna  The total search 
space and temporal cost of searching for the minimum 
determinant between MCM and OSP is then compared 

(Fig. 7).  Not just that, the minimum determinants between 
these two approaches are inspected as well to ascertain 
whether any discrepancies exist in terms of the search 
outcome. 

FIGURE 7. Comparison between minimal cycle method and optimal subtree pruning

The experimentation is also performed to analyze the 
risk of using OSP in calculating the minimum determinant. 
It is hypothesized that the approach could lack accuracy 
in certain cases.

RESULTS AND DISCUSSION

ANALYSIS OF SPATIAL AND TEMPORAL 
REDUCTION

The comparison between the minimal cycle method and 
optimal subtree pruning in terms of the spatial and temporal 
cost is shown in Table 2. From the spatial perspective, OSP 

reduces the spatial complexity of MCM by 45.61%. This 
is consistent with the temporal enhancement where OSP 
reduces the processing time of MCM by 47.61%. Apart 
from the degree of enhancement afforded by OSP, it is also 
crucial to analyze the breakdown between enhancement, 
neutrality and regression. This analysis practically explains 
how frequent OSP would improve or worsen MCM. As 
shown Table 3, OSP improves MCM by 0.9776 of the time 
and does not impact the search process or remains neutral 
at 0.0224 of the time. It must be noted that OSP does not 
worsen MCM in any of the instances of the experimentation. 
There is 0.0000 regression. Thus, there is no risk in using 
OSP. 

TABLE 2. MCM vs OSP: Spatial and temporal analysis
Dimension Total

Generator
Matrix

Minimal Cycle Method
(MCM)

Optimal Subtree Pruning
(OSP)

Reduction
(%)

Spatial 65536 1662040 nodes 904000 nodes 45.61 %
Temporal 65536 4633 ms 2427 ms 47.61 %
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TABLE 3. Breakdown of enhancement, neutrality and 
regression

Enhancement Neutrality Regression
Probability 0.9776 0.0224 0.0000

ANALYSIS OF ENHANCEMENT

In addition to the former analysis, the extent of enhancement 
that is succeeded by OSP is further investigated. This is 
done by analyzing the average, maximum and minimum 
enhancement Table 4. On average, OSP enhances MCM 
by 45.77%. The maximum enhancement is 64.00% while 
the lowest one is 21.05%. Besides that, the probability 

distribution of the intensity for each of the enhancement 
that is exhibited by OSP when compared with MCM is 
studied as well Table 5.Intensity is defined as the measure 
of how frequently the new algorithm improves the original 
algorithm by a certain degree or range.Each row signifies 
the range of improvement displayed by OSP. As shown 
from the result, OSP improves MCM most frequently by 
50.00% - 60.00% (Figure 8). This happens at 0.4312 of the 
time.The analysis on the improvement intensity gives a 
rather beneficial overview of how often a particular 
algorithm can accomplish a certain degree of quality in 
term of its spatial complexity. This provides a good 
indicator when estimating the overall performance of a 
particular enhancement with regard to its likeability of 
instigation.

TABLE 4. Average, maximum and minimum enhancement
Enhancement Average Maximum Minimum

45.77% 64.00% 21.05%

TABLE 5. Intensity of enhancement
Enhancement Range Total Search 

Enhanced
Probability

1 [00.00, 10.00) 0 0.0000
2 [10.00, 20.00) 0 0.0000
3 [20.00, 30.00) 6300 0.0983
4 [30.00, 40.00) 4728 0.0738
5 [40.00, 50.00) 22044 0.3441
6 [50.00, 60.00) 27624 0.4312
7 [60.00, 70.00) 3372 0.0526
8 [70.00, 80.00) 0 0.0000
9 [80.00, 90.00) 0 0.0000
10 [90.00, 100.00) 0 0.0000

FIGURE 8. Intensity of enhancement
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ANALYSIS OF FAILURE

Failure is defined as the erroneous minimum determinant 
that is given by the optimal subtree pruning. In other words, 
it transpires when pruning interferes with the ability of the 
search algorithm to find the minimum determinant 
accurately. From the 65536 generator matrices that are 
processed with the optimal subtree pruning, 2340 failures 
are detected. Thus, the risk of failure is quite marginal, 
only 0.0357. Failure is seen in the case of the generator 
matrix G = [3 3 0 1 ; 3 2 2 0]T where the optimal subtree 
pruning mistakenly states that the minimum determinant 
is 8.0 when in actuality, it is 4.0, as found by the minimal 
cycle method. This happens when the minimum determinant 
resides within the subtree that is perceived as non-optimal 
to the optimal subtree pruning. Since non-optimal subtrees 
are pruned entirely, the search process would never come 
across the right solution. To understand how it could 
happen, consider a hypothetical scenario below (Figure 9). 
The shaded nodes are those that are part of the minimal 
complete cycles. For the sake of argument, assume that 
OSP generates three minimal complete cycles and finds 
their minimum determinants to be 16.0, 12.0 and 20.0 
respectively. Here, the minimal complete cycle with the 
least value lies in the middle part of the tree. As such, search 
only continues within this subtree while the others are 
pruned. In doing so, the minimum determinant of 8.0 is 
found.

FIGURE 9. Failure of OSP

FIGURE 10. Success of MCM

Now, consider the same scenario but this time, it is 
handled by MCM instead (Figure 10). MCM does not 
enforce any subtree pruning. Therefore, all subtrees would 
be searched. This implies that the generation stage for 
MCM is similar to OSP where three minimal complete 
cycles are also generated. Again, the node with the 
minimum determinant of 8.0 is found by MCM. Here 
however, the search does not simply end. MCM finds a 
better value of 4.0 for the minimum determinant on a node 
that belongs to the subtree pruned by OSP.  

PRACTICAL IMPLICATIONS AND 
FUTURE RESEARCH

The findings of this research demonstrate that the Optimal 
Subtree Pruning (OSP) method significantly enhances the 
efficiency of minimum determinant computation in space-
time trellis codes. This improvement has several practical 
implications such as reducing error probability.  By 
effectively pruning non-optimal subtrees, OSP reduces the 
error probability, leading to more reliable data transmission 
in wireless communication systems. This is particularly 
beneficial for applications in 5G networks and MIMO 
systems where high data rates and low error rates are 
critical.

The reduction in computational complexity and error 
probability translates to an improved SNR, enhancing 
overall communication quality.
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Based on the findings of this paper, several potential 
directions for future research can be explored such as 
extension of  OSP to different code structure. Investigating 
how OSP performs with various types of error-correcting 
codes can provide insights into its versatility and potential 
universal benefits.

Implementing the OSP algorithm in real-world 
communication systems and conducting extensive field 
tests can validate its practical benefits and identify potential 
areas for improvement. This includes testing in different 
frequency bands and under varying environmental 
conditions.

Another potential direction is the integration of OSP 
with machine learning algorithms to dynamically adapt the 
pruning strategy based on real-time data. This could lead 
to even more efficient and intelligent communication 
systems capable of self-optimizing their performance.

CONCLUSION

The Optimal Subtree Pruning (OSP) algorithm is designed 
to enhance computational efficiency by reducing the search 
space required for minimum determinant computation in 
space-time trellis codes. Here’s how OSP impacts 
computing time:

1. Pruning Mechanism: OSP employs a selective pruning 
mechanism based on minimal complete cycles. By
identifying and focusing on the optimal subtree, OSP 
eliminates unnecessary computations associated with 
non-optimal subtrees. This targeted approach
significantly reduces the number of operations
required, leading to faster computation times.

2. Comparative Reduction: OSP achieves a spatial
complexity reduction of 45.61% and a temporal
complexity reduction of 47.61% compared to the
Minimal Cycle Method (MCM). These reductions
translate to substantial savings in computing time,
making OSP a more efficient algorithm for real-time
applications.

3. Efficiency Metrics: The efficiency of OSP is measured
by its ability to enhance the performance of MCM.
OSP improves MCM’s efficiency 97.76% of the time,
with no instances of regression. This consistent
performance improvement underscores OSP’s
effectiveness in reducing computing time across
various scenarios. In spite of these enhancements, the 
approach suffers a 0.0357 risk of failure. In retrospect,
the overall benefits outweigh the risk.
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