
Journal of Quality Measurement and Analysis                                                                JQMA 20(2) 2024, 1-14 
e-ISSN: 2600-8602                                                                                                                                        http://www.ukm.my/jqma 
https://doi.org/10.17576/jqma.2002.2024.01 

                

 

DYNAMIC MODELLING FOR ASSESSING THE IMPACT OF MARINE 
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ABSTRACT  

Marine debris has significant impacts on marine animals including the sea turtles, which are 
particularly vulnerable to the presence of waste in the marine environment. We propose a novel 
mathematical model with three compartments to examine this effect: the sea turtle population, 
the concentration level of pollution inside sea turtles’ bodies, and the concentration level of 
pollution in marine environment. We locate the equilibrium points (also known as equilibria) 
for the suggested model and perform an analytical check on their stability. We also use the 
bifurcation analysis to examine how changing a model parameter affects the stability of the 
model's equilibria. Our findings demonstrated the existence of two equilibria: the sea turtles' 
survival equilibrium and their extinction equilibrium. The eigenvalues of the Jacobian matrix 
applied to the proposed model have been used to demonstrate the conditions for stability of these 
equilibria. The resulting bifurcation diagram demonstrates that both equilibrium points undergo 
transcritical bifurcations when the values of response intensity of toxicity parameter is varied. 
The findings of this study can help local or national governments make decisions and educate 
the public about sea turtle conservation in order to sustain sea turtle populations in the future.  

Keywords: dynamics model; sea turtle; marine debris; stability; bifurcation 

 

ABSTRAK  

Serpihan marin mempunyai kesan yang besar terhadap haiwan laut termasuk penyu, yang sangat 
terdedah kepada kehadiran sisa di persekitaran marin. Kami mencadangkan model matematik 
baru dengan tiga petak untuk mengkaji kesan ini: populasi penyu laut, tahap kepekatan 
pencemaran di dalam badan penyu laut, dan tahap kepekatan pencemaran dalam persekitaran 
marin. Kami mencari titik keseimbangan untuk model yang dicadangkan dan melakukan 
pemeriksaan analisis terhadap kestabilan mereka. Kami juga menggunakan analisis bifurcation 
untuk mengkaji bagaimana perubahan parameter model mempengaruhi kestabilan 
keseimbangan model. Penemuan kami menunjukkan kewujudan dua titik keseimbangan: 
kewujudan penyu laut (terus hidup) dan kepupusan penyu. Nilai eigen yang diperolehi daripada 
matriks Jacobian telah digunakan untuk menunjukkan syarat-syarat untuk kestabilan titik-titik 
keseimbangan ini. Rajah dwicabangan yang terhasil menunjukkan bahawa kedua-dua titik 
keseimbangan menjalani dwicabangan jenis transkritikal apabila nilai parameter keamatan 
tindak balas divariasikan. Penemuan kajian ini diharapkan dapat membantu kerajaan tempatan 
atau nasional membuat keputusan dan mendidik orang ramai mengenai pemuliharaan penyu laut 
bagi mengekalkan populasi penyu laut pada masa akan datang. 

Kata kunci: model dinamik; penyu; serpihan marin; kestabilan; dwicabangan 

 

1. Introduction 

Researchers predict that global sea turtle populations have reduced by up to two-thirds since 
the beginning of the Industrial Age in the early twentieth century. Only roughly 6.5 million sea 
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turtles now inhabit the world's subtropical and tropical coastlines. Indeed, sea turtle populations 
are under threat: The International Union for the Conservation of Nature (IUCN) classifies three 
of the world's seven sea turtle species as "critically endangered"; green sea turtle populations 
have declined by 90 percent, while leatherback populations have declined by 40 percent (Iyer 
2022). Besides the natural predators that threatened the sea turtles, human activities are also the 
major contributors which are currently threatening sea turtles at all life stages, both on nesting 
beaches and at sea (Tomas et al. 2002).   

Marine debris is mostly caused by litter from ships, fishing and leisure boats, and waste 
thrown into the water from land-based sources in industrialised and densely populated areas 
(Derraik 2002). Debris and toxic waste deposited on the coast or at sea pollute the environment 
and endangers marine life. The debris comprises not only fisheries waste such as lines, plastic 
ropes, and nets, but also anthropogenic detritus such as plastic bags, six pack rings, tar, 
styrofoam, glass, and other things that might entangle or be consumed by sea turtles (Bugoni et 
al. 2001; Marn et al. 2020; Meaza et al. 2021). 

According to Manes et al. (2023), fibropapillomas, a disease that is currently killing many 
sea turtles, may be connected to pollution in the oceans and near-shore waterways. Pollution 
contaminates and kills aquatic plant and animal life, which is typically food for sea turtles. 
Water contamination is caused by oil spills, urban runoff from chemicals, fertilisers and 
petroleum, and other factors. Because the ocean is so vast, many people mistakenly believe that 
pollutants will be diluted and spread to acceptable levels. However, the toxins produced by 
these pollutants become more concentrated as they degrade in size. As a result, numerous links 
in the food chain, including sea turtles, consume these tiny, more deadly particles. 

There are numerous mathematical models for investigating the impactness of pollution on 
organisms. For example, Maystruk and Abdella (2011) proposed a mathematical model with 
five state variables: animal species, plant species, concentration of toxicant in individual 
animal, concentration of toxicant in individual plant and concentration of toxicant in 
environment. To see the effect of pollution on animals and plants, they varied the values of 
amount of pollution being input to the system. Their findings showed that when the input is low 
the coexistence between the organisms and pollution occurred. On the other hand, when the 
input is much higher, the number of animals and plants decreases, while the level of pollution 
increases.  

Huang et al. (2020) used the Lotka-Volterra model to investigate predator-prey population 
dynamics in terms of toxicological response intensity (strength to population growth rate) to 
microplastic particles, as well as the negative effects on prey feeding ability and predator 
performance caused by microplastic particles. They discover four important response patterns 
of predator and prey dynamics to microplastic particles, which are the predator is more 
vulnerable than prey to the detrimental impact of microplastic particles, the coexistence of a 
predator and prey population is dependent on the presence of prey, and prey density is the key 
factor to ensure the stability of a predator-prey system, and the impact of microplastic particles 
is reduced when response intensity is low (values less than 1.0). 

However, there is a gap in the literature regarding the mathematical modelling on the impact 
of pollution on sea turtles. Only a few studies have considered this research and these studies 
have become limited. Therefore, this research aimed to fill this gap by developing a 
mathematical model for investigating the dynamics of sea turtles with the presence of pollution. 
In fact, this study is motivated by Huang et al. (2020), where we modified their model to the 
case of sea turtle populations. In particular, the pollution is divided into two compartments: 
pollution in the sea turtles’ bodies and pollution in the marine environment. We will perform 
stability analysis as well as bifurcation analysis for the proposed model. In this research, we are 
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interested to investigate the effect of response intensity of toxicity by the sea turtles on their 
survivaliblity. 

2. Methodology  

In this section, we introduce some mathematical notations including equilibrium point, stability 
and bifurcation theory.  

2.1.  Model development of mathematical model of sea turtle-pollution 

In this study, we consider a simple model which describes the effect of pollution in sea turtles’ 
body and environment on sea turtle population. In our model, we assume that the population of 
sea turtles, 𝑆(𝑡), is increased by the natural growth rate 𝑟 and may decreased due to natural 
death rate, 𝑑, and also due to response intensity of toxicity, 𝑚. Whereas, the concentration of 
pollution in sea turtles’ body 𝑃ௌ(𝑡) is increased by the absorption rate of toxicity into sea turtles’ 
body, 𝑏 and it may decrease by egestion rate, 𝑔. Besides, the concentration of pollution in the 
environment 𝑃ா(𝑡) will increased by toxicity excreted by sea turtle, 𝑛 and also the input rate of 
pollution by human activities, 𝑈. 

From the assumptions made, the dynamics of sea turtles and pollution can be written as 
follows: 

 
ௗௌ

ௗ௧
= 𝑟𝑆 − 𝑑𝑆 − 𝑚𝑆𝑃ௌ − 𝑛𝑆𝑃ௌ,  

 ௗ௉ೄ

ௗ௧
= 𝑏𝑃ா − 𝑔𝑃ௌ + 𝑚𝑆𝑃ௌ,  

ௗ௉ಶ

ௗ௧
= 𝑛𝑆𝑃ௌ + 𝑈 − 𝑏𝑃ா ,  

(1) 

 
with initial data 𝑆(0) > 0, 𝑃ா(0) > 0 and 𝑃ௌ(0) > 0. All parameters in the above equation are 
assumed to be nonnegative. In the following section, we prove the positivity of the equilibrium 
points for model in Eq. (1). This proof is crucial to ensure that the solution is biologically 
meaningful. Table 1 listed the description of variables and parameters used in this model. 

Table 1: Description of parameters for model in Eq. (1) 

Symbol Description  
𝑑𝑆

𝑑𝑡
 the rate of changes of the number of sea turtles 

𝑑𝑃ௌ

𝑑𝑡
 the rate of changes of concentration level of pollution in sea turtles’ body 

𝑑𝑃ா

𝑑𝑡
 

the rate of changes of concentration level of pollution in marine 
environment 

𝑟 natural growth rate of sea turtle population 

𝑑 natural death rate of sea turtle population 

𝑚 response intensity of toxicity 

𝑏 absorption rate of toxicity from environment into sea turtles’ bodies 

𝑔 egestion rate 

𝑛 toxicity excreted by the sea turtles 

𝑈 input rate of pollution (marine debris) 
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2.2.  Equilibria and stability theory 

A special class of solutions of an autonomous initial value problem (IVP) are the equilibria 
(also called singular points, steady solutions or stationary solutions). The solutions which 
denoted by 𝑥∗ are constant in time. 
 
Definition 2.1. (Glendinning 1994) We say 𝑥∗ is an equilibrium point of the IVP 𝑥̇ = 𝑓(𝑥) if 
any of the equivalent conditions hold. 
 

(1) 𝑥∗ is constant 
(2) 𝑥∗ solves the IVP for some 𝑥(0) where 𝑓൫𝑥(0)൯ = 0 
(3) 𝑥̇ = 0 for all 𝑡. 

 
Hence, the equilibria are given simply by finding solutions 𝑥∗ of the system of equations  

 
𝑓(𝑥) = 0.  

 
Now, we discuss the stability of equilibria. Consider 𝑥̇ = 𝐴𝑥 where 𝑥 ∈ ℝௗ and the matrix 

coefficient 𝐴ௗ×ௗ. Suppose that 𝜆௜ are eigenvalues of 𝐴, then we can classify 𝑥∗ as follows: 
 
Theorem 2.2. (Glendinning 1994) Suppose that 𝑅𝑒(𝜆௜) < 0 for all 𝑖 = 1, … , 𝑑 . Then 𝑥∗  is 
stable.  
 
Theorem 2.3. (Glendinning 1994) Suppose that 𝑅𝑒(𝜆௜) > 0 for all 𝑖 = 1, … , 𝑑 . Then 𝑥∗  is 
unstable.  
 
Theorem 2.4. (Glendinning 1994) Suppose that at least one of the eigenvalues is positive. Then 
𝑥∗ is said to be saddle, where saddle implies unstable.  
 
Theorem 2.5. (Lynch 2014). Suppose that 𝜆 = 𝛼 ± 𝛽𝑖, where 𝜆 is the complex eigenvalue. The 
conditions of stability of 𝑥∗ is given as follows: 

(1) If 𝛼 > 0, then 𝑥∗ is unstable spiral. 
(2) If 𝛼 < 0, then 𝑥∗ is stable spiral. 
(3) If 𝛼 = 0, then 𝑥∗ is a center. 

 
We now define the term hyperbolic system.  

 
Definition 2.6. (Glendinning 1994) A nonlinear system 𝑥̇ = 𝑓(𝑥)  with equilibrium 𝑥∗  is 
hyperbolic if and only if the Jacobian 𝐷𝑓(𝑥∗) has no eigenvalues with zero real part.  
 

In the result’s section, we will prove that the model in Eq. (1) can also exhibit non-hyperbolic 
phenomenon in which there exists eigenvalue with zero real part. 

2.3. Bifurcation theory   

In this paper, we also investigate the stability of the equilibria as a system parameter is varied. 
This is crucial to study the impact of certain parameters on the system studied. Consider the 
following system: 
 

𝑥̇ = 𝑓(𝑥, 𝜇),       𝑥 ∈ ℝௗ, 𝜇 ∈ ℝௗ ,  
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where 𝜇 is a bifurcation parameter (i.e. the parameter where its values is varied).  
 
Definition 2.7. (Glendinning 1994) Suppose that for some 𝜇 = 𝜇∗ there is an equilibrium 𝑥∗ 
that is not hyperbolic, i.e., 𝑓(𝑥∗, 𝜇∗) = 0 and Jacobian 𝐷𝑓(𝑥∗, 𝜇∗) has at least one eigenvalue 
with zero real part. The we say that (𝑥∗, 𝜇∗) is a bifurcation point for the system.  
 
Definition 2.8. The plot of the state variable 𝑥 versus parameter 𝜇 is called as a bifurcation 
diagram. 
 

Classically, there are four common types of bifurcation for ODE system: saddle-node, 
transcritical, pitchfork and Hopf bifurcation. In this study, we consider the transcritical 
bifurcation for model in Eq. (1).  

3. Analytical Results 

In this section, we explain analytical results for equilibria and their positiveness, conditions of 
stability of equilibria as well as proving the transcritical bifurcation for model in Eq. (1).  

3.1. Equilibrium analysis   

To find the equilibrium points for model (1), we take the equations equal to 0 and solve the 
variables simultaneously for 𝑆(𝑡), 𝑃ா(𝑡) and 𝑃ௌ(𝑡). There are two possible equilibrium points 
for this model in the form of 𝐸 = ൫𝑆∗(𝑡), 𝑃ௌ

∗(𝑡), 𝑃ா
∗(𝑡)൯: 

 

𝐸ଵ = ቀ0,
௎

௕
,

௎

௚
ቁ,  

 

𝐸ଶ = ቀ
௎(௠ା௡)ି௚(௥ିௗ)

(௠ା௡)(ௗି௥)
,

௎௠(௠ା௡)ି௚௡(ௗି௥)

௕(௠ା௡)మ , −
ௗି௥

௠ା௡
ቁ.  

(2) 
 

(3) 

 
From the above, it is obvious to see that the solution in 𝐸ଵ is positive. However, we have to 

prove the positivity of equilibrium point 𝐸ଶ  to ensure that the solution is biologically 
meaningful which is concluded in Lemma 3.1.  
 
Lemma 3.1. Consider 𝐸ଶ  in Eq. (3) and rewrite it as 𝐸ଶ = ൫𝑆∗(𝑡), 𝑃ௌ

∗(𝑡), 𝑃ா
∗(𝑡)൯. 𝑆∗(𝑡) >

0, 𝑃ௌ
∗(𝑡) > 0, and  𝑃ா

∗(𝑡) > 0 if and only if  𝑟 > 𝑑. 
 
Proof. For 𝑃ௌ to be positive, let  
 

𝑃ௌ
∗ = −

ௗି௥

௠ା௡
> 0.  

 
Thus, it implies  𝑟 > 𝑑. Then, for 𝑆 to be positive, let  
 

𝑆∗ =
௎(௠ା௡)ି௚(௥ିௗ)

(௠ା௡)(ௗି௥)
> 0.  

 
Thus, it implies that 𝑈(𝑚 + 𝑛) > 𝑔(𝑟 − 𝑑), which is true if 𝑟 > 𝑑 . Then, for 𝑃ா  to be 

positive, let  
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𝑃ா
∗ =

௎௠(௠ା௡)ି௚௡(ௗି௥)

௕(௠ା௡)మ > 0.  

 
Thus, it implies that 𝑈𝑚(𝑚 + 𝑛) > 𝑔𝑛(𝑑 − 𝑟) which is true if 𝑟 > 𝑑.  
 

3.2. Stability analysis   

The stability analysis for model in Eq. (1) involves evaluating the eigenvalues of the Jacobian 
matrix of partial derivatives with respect to the variables involved in the proposed model. The 
general formula of Jacobian matrix for proposed system is 

 

𝐽 =

⎝

⎜⎜
⎛

డௌ̇

డௌ

డௌ̇

డ௉ೄ

డௌ̇

డ௉ಶ

డ௉ೄ̇

డௌ

డ௉ೄ̇

డ௉ೄ

డ௉ೄ̇

డ௉ಶ

డ௉ಶ̇

డௌ

డ௉ಶ̇

డ௉ೄ

డ௉ಶ̇

డ௉ಶ⎠

⎟⎟
⎞

,  

 
where all the listed partial derivatives are with respect to 𝑆, 𝑃௦ and 𝑃ா, respectively. Therefore, 
the Jacobian matrix for model (1) can be written as: 
 

𝐽 = ቌ

−(𝑚 + 𝑛)𝑃௦ − 𝑑 + 𝑟 −𝑆(𝑚 + 𝑛) 0
𝑚𝑃௦ 𝑚𝑆 − 𝑔 𝑏
𝑛𝑃௦ 𝑛𝑆 −𝑏

ቍ.     (4) 

 
Therefore, we have the following corollaries: 
 
Corollary 3.2. The equilibrium 𝐸ଵ is said to be 

(1) asymptotically stable if and only if 𝑈(𝑚 + 𝑛) > −𝑔(𝑑 − 𝑟), 
(2) saddle if and only if 𝑈(𝑚 + 𝑛) < −𝑔(𝑑 − 𝑟), where saddle implies unstable. 

 
Proof. By substituting 𝐸ଵ  into Eq. (4) and substituting det൫𝐽ாభ

− 𝜆𝐼൯ = 0 , we obtain the 
following eigenvalues: 
 

𝜆ଵ = −𝑔,  
𝜆ଶ = −𝑏,  

𝜆ଷ = −
௎(௠ା௡)ା௚(ௗି௥)

௚
,  

 
(5) 

 

 
where 𝜆 denotes the eigenvalue and  𝐼 is the identity matrix. Obviously, both 𝜆ଵ  and 𝜆ଶ are 
negative while 𝜆ଷ can be either positive or negative. To make 𝐸ଵ asymptotically stable, 𝜆ଷ must 
be negative, Thus, 
 

௎(௠ା௡)ା௚(ௗି௥)

௚
> 0.  

 
Then 𝑈(𝑚 + 𝑛) + 𝑔(𝑑 − 𝑟) > 0. Rearrange to get  

 
𝑈(𝑚 + 𝑛) > −𝑔(𝑑 − 𝑟).  
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Vice-versa, to get that  𝐸ଵ is saddle or unstable,  
 
௎(௠ା௡)ା௚(ௗି௥)

௚
< 0.   

 
Then 𝑈(𝑚 + 𝑛) + 𝑔(𝑑 − 𝑟) < 0. Rearrange to get  
 

𝑈(𝑚 + 𝑛) < −𝑔(𝑑 − 𝑟).       
 
From Corollary 3.2, if 𝑑 − 𝑟 < 0, then  𝐸ଵ is unstable, and if 𝑑 − 𝑟 ≥ 0, then 𝐸ଵ is stable. 

In order to check the stability for 𝐸ଶ , we use Routh-Hurwitz criterion by using 
det൫𝐽ாమ

− 𝜆𝐼൯ = 0 to obtain the following characteristic polynomial: 
 

𝑃(𝜆) = 𝜆ଷ + 𝑎ଶ𝜆ଶ + 𝑎ଵ𝜆 + 𝑎଴ = 0,  (6) 
 
where 
 

𝑎଴ = −
௕

଼
൫𝑈(𝑚 + 𝑛) + 𝑔(𝑑 − 𝑟)൯,  

 

𝑎ଵ = −
ଵ

ସ

௎(௕ାௗି௥)௠మାቀଶ௡ቀ௕ା
೏

మ
ି

ೝ

మ
ቁ௎ା௚(ௗି௥)మቁ௠ା௎௕௡మ

(௠ା௡)(ௗି௥)
,  

 

𝑎ଶ = −
ଵ

ଶ

൫௎௠ (ௗି௥)(௕ା௚)൯௡ା௠൫௎௠ି௕(ௗି௥)൯

(௠ା௡)(ௗି௥)
.  

 
Corollary 3.3. The equilibrium 𝐸ଶ is said to be: 

(1) locally asymptotically stable if and only if 𝑎଴, 𝑎ଵ, 𝑎ଶ > 0 and 𝑎ଶ𝑎ଵ > 𝑎଴, 
(2) unstable if otherwise. 

 
Proof. From the Routh-Hurwitz criterion, the equilibrium 𝐸ଶ is locally asymptotically stable if 
both criterion of 𝑎଴, 𝑎ଵ, 𝑎ଶ > 0 and 𝑎ଶ𝑎ଵ > 𝑎଴ are satisfied. In particular, 𝑎଴ > 0 if  
 

𝑑 − 𝑟 > −
(௠ା௡)௎

௚
.  

 
Then, 𝑎ଵ > 0 if  
 

𝑑 − 𝑟 > ±
ଵ

ଶ

ቀ∓௎௠ାඥ௎మ௠మି௎௕௚௠ቁ(௠ା௡)

௚௠
.  

 
Now, 𝑎ଶ > 0 if  
 

𝑑 − 𝑟 >
௎௠(௠ା௡)

௕(௠ା௡)ା௚௡
.  

 
If any of the above conditions are unsatisfied, then 𝐸ଶ is unstable.  
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3.3. Bifurcation analysis   

In this section, we proved that the model in Eq. (1) undergoes a transcritical bifurcation. For 
model in Eq. (1), we choose parameter of response intensity of toxicity (𝑚) as our bifurcation 
parameter. The result is proved in the following theorem.  
 
Theorem 3.4. The proposed model in Eq. (1) undergoes a transcritical bifurcation at 𝑚 = 𝑚௖, 
where 
 

𝑚௖ =
௚(௥ିௗ)ି௎௡

௎
.  

 
Proof. For model in Eq. (1), we found that there are two equilibria, one at 𝐸ଵ and another at 𝐸ଶ. 
So for 𝑚 < 𝑚௖  and 𝑚 > 𝑚௖  there are two equilibria and if 𝑚 = 𝑚௖ , there is only one 
equilibrium point (at ൫𝑆(𝑡), 𝑃ா(𝑡), 𝑃ௌ(𝑡)൯ = (𝑆∗, 𝑃ா

∗, 𝑃ௌ
∗)). When 𝑚 = 𝑚௖ and following from 

Definition 2.6, we need to prove that one of the eigenvalues from the Jacobian matrix is equal 
to zero, so that the equilibria are not hyperbolic. Thus, we equate the last eigenvalue from Eq. 
(5) to zero: 
 

௎(௠ା௡)ି௚(௥ିௗ)

௚
= 0.  

 
By simple calculation, we solve the above equation with respect to 𝑚  and obtain the 

following: 
 

𝑚௖ =
௚(௥ିௗ)ି௎௡

௎
.  

 
By substituting the above 𝑚, we obtained that 𝜆ଷ = 0. We expect to get a transcritical 

bifurcation for model in Eq. (1) in which the two equilibria 𝐸ଵ  and 𝐸ଶ  will exchange their 
stability at this bifurcation point 𝑚௖.    

4. Numerical Simulation Results 

In this section, we discuss the numerical results for stability analysis, time series and phase 
portrait as well as for the bifurcation analysis, for deeper understanding about the behaviour of 
solution in model in Eq. (1) for long-term period.  

4.1. Stability results   

Here, we will discuss the behavior of equilibrium points obtained from the stability analysis of 
model in Eq. (1), mainly with three components: 𝑆 as prey, 𝑃௦ as middle predator and 𝑃ா  as top 
predator. The critical point and eigenvalues were calculated with the help of the Maple software 
using the parameter values in Table 2. The stability investigation's findings are summarized in 
Table 2. The results of the types of stability based on eigenvalues are summarized in Table 3. 
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Table 2: Values of parameters for model in Eq. (1) 

Parameter Value Source 

𝑟 0.2174 Mohd Roslan et al. (2019) 

𝑑 0.03 Assumed 

𝑚 [0,0.2] Varied 

𝑛 0.03 Assumed 

𝑏 0.5 Assumed 

𝑔 1 Maystruck & Abdella (2011) 

𝑈 1 Maystruck & Abdella (2011) 

 
The results are varying with different values of response intensity of toxicity, 𝑚 . By 

considering 𝑚 = 0 the equilibrium 𝐸ଵ  has one positive eigenvalue which indicate that 𝐸ଵ  is 
unstable by Theorem 2.4. On the other hands, 𝐸ଶ  has complex conjugate eigenvalues with 
negative signs of the real parts. Therefore by Theorem 2.5, 𝐸ଶ denotes a stable spiral node, 
inferring that the system maintains a stable equilibrium and that even small minor perturbation 
will cause oscillations. 

When  𝑚 = 0.1, the equilibrium 𝐸ଵ has different signs of eigenvalues. This 𝐸ଵ indicates that 
the system is unstable and may display significant variations. Contrast with equilibrium 𝐸ଶ, the 
system is stable because all the eigenvalues have negative signs, which is in a good agreement 
with Theorem 2.2.  

Then, by considering 𝑚 = 0.2, equilibrium 𝐸ଶ is omitted as it is not biologically significant. 
Negative equilibrium point signifies to the situations which one or more populations have 
negative values, which is not a biological meaningful scenario. Rather, the only equilibrium left 
is 𝐸ଵ, where this 𝐸ଵ is stable. Overall, from Table 3 we can also see that 𝐸ଵ from unstable to 
stable, whilst 𝐸ଶ moves from stable to unstable, as 𝑚 increases. We will show the critical value 
of 𝑚 for which these equilibria exchange their stability in the section of bifurcation. The next 
section simulates the time series and phase portrait plot for the same values of 𝑚. 

Table 3: Eigenvalues and types of stability for equilibria in model in Eq. (1) for varies value of response intensity 

of toxicity, 𝑚 

Response intensity 
of toxicity, 𝑚 

Equilibrium point Eigenvalues Types of 
stability 

0 𝐸ଵ = (0,2.0,1) 𝜆ଵ = 0.1574  
𝜆ଶ = −0.5000  
𝜆ଷ = −1.0000  

Unstable 

𝐸ଶ = (27.10,12.49,6.25) 𝜆ଵ = −0.0091 +  0.2302𝑖  
𝜆ଶ = −1.4818  
𝜆ଷ = −0.0091 −  0.2303𝑖  

Stable spiral 
node 

0.1 𝐸ଵ = (0,2.0,1) 𝜆ଵ = 0.0574  
𝜆ଶ = −0.5000  
𝜆ଷ = −1.0000  

Unstable 

𝐸ଶ = (2.356,2.204,1.442) 𝜆ଵ = −0.1077  
𝜆ଶ = −0.3174  
𝜆ଷ = −0.8392  

Stable 

0.2 𝐸ଵ = (0,2.0,1) 𝜆ଵ = −0.0426  
𝜆ଶ = −0.5000  
𝜆ଷ = −1.0000  

Stable 

𝐸ଶ = (−0.99,1.95,0.82) 𝜆ଵ = 0.0336  
𝜆ଶ = −0.5271  
𝜆ଷ = −1.2041  

Unstable 
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4.2. Time series and phase portrait 

In this section, the time series and three-dimensional phase portrait are plotted for different 
values of the response intensity 𝑚, as shown in Figure 1-3. The time series plotted in these 
figures used the same initial condition ൫𝑆(0), 𝑃ா(0), 𝑃ௌ(0)൯ = (2.0,0.5,1.0). Maple software is 
used to run the plots.When there is no response intensity of toxicity by the sea turtles (𝑚 = 0), 
the population of sea turtle increases and oscillate, as shown in Figure 1. At the same time, the 
levels of concentration for both inside the sea turtles’ bodies and in the marine environment 
also show the same pattern as sea turtles. Although in the absence of response intensity, the 
pollution in the environment still absorbed into sea turtles’ bodies. And this indicates that 
pollution in the water always exists since there is an inflow rate of pollution which mainly 
comes from the marine debris. The phase portrait on the right of Figure 1 shows that the 
equilibrium point 𝐸ଶ = (27.10,12.49,6.25)  exhibits a stable spiral pattern, indicating that the 
system is stable, and the population of sea turtle would be sustained in the future.  

 

 

 

  
Figure 1: Time series and phase portrait for 𝑚 = 0 

 
When the response intensity exists and occurs with low rate (𝑚 = 0.1), the number of sea 

turtles shows decreases pattern and stabilize to an equilibrium point (see Figure 2). During this 
time, the amount of pollution inside the bodies is approximately the same as the amount of 
pollution inside the water. In this case, from the phase portrait plot, the stability of the 
equilibrium point 𝐸ଶ also shows a stable spiral pattern. The initial conditions move towards the 
equilibrium point, indicating that the system is stable, and the sea turtle population, 
concentration level in both bodies and environment remain in balance. 

 

 

 

 
 

Figure 2: Time series and phase portrait for 𝑚 = 0.1 
 

However, for high intensity of response to toxicity (𝑚 = 0.2), the sea turtles are expected 
to extinct approximately in the next 50 years (see Figure 3). This is because increasing in 
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response to toxicity leads to the extinction of sea turtle population. On the other hand, the 
pollution inside the sea turtles’ bodies and in the marine environment remains in balance.  

 

 

 

 

 
 
 

Figure 3: Time series and phase portrait for 𝑚 = 0.2 
 
These results demonstrate the critical role of response intensity of toxicity in model in Eq. 

(1). Thus, understanding the dynamics of model in Eq. (1) under different levels of this response 
is crucial for effective ecosystem management and conservation.  
 

4.3. Bifurcation results on the impact of response intensity of toxicity on sea turtles for 
model in Eq. (1) 

The dynamical behaviour of sea turtles, concentration level of pollution in sea turtles’ body and 
concentration level of pollution in the environment towards the response intensity of toxicity 
(𝑚) are discussed in this section. The mathematical software used for this purpose is XPPAUT. 
The parameter 𝑚 was varied while the other parameters remained constant, as shown in Table 
2. By employing XPPAUT software, one-parameter bifurcation analysis was performed, which 
resulted to one type of bifurcation phenomena called the transcritical bifurcation. Red lines in 
Figure 4-6 represents stable equilibrium point while black lines represent the unstable 
equilibrium point.  

Figure 4 showed the bifurcation diagram for sea turtle population toward the response 
intensity of toxicity 𝑚. The straight line represents the equilibrium point 𝐸ଵ (the extinction of 
sea turtles) while the curve shows the equilibrium point 𝐸ଶ (the survival of sea turtles). At the 
transcritical bifurcation point, the two equilibria exchange their stability. In particular, 𝐸ଵ 
changes from being unstable to stable while 𝐸ଶ changes from being stable to unstable. Based 
on the formula in Theorem 3.4 and the values of parameters in Table 2, the transcritical 
bifurcation point is obtained as 𝑚௖ = 0.1574. 

In region I (0 ≤ 𝑚 ≤ 𝑚௖), it can be observed that 𝐸ଶ is stable. This indicate that the sea 
turtle population survived but shows the decrease in numbers as the response intensity on the 
toxicity increased, and finally the population hits zero as 𝑚 = 𝑚௖. However, in region II, 𝐸ଵ is 
now stable, which implies that the sea turtles are expected to extinct due to higher response to 
the toxicity (𝑚 > 𝑚௖). 

On the other hand, Figure 5 and 6 shows the pattern of concentration level of pollution inside 
sea turtles’ bodies (𝑃ௌ) and concentration level of pollution in the marine environment (𝑃ா) 
respectively, for response intensity 𝑚 ∈ [0,0.2]. The findings showed that both patterns are 
similar. The concentration level for both 𝑃ௌ and 𝑃ா decreases in Region I and then in Region II 
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the level remained at positive constant. In particular, the environmental pollution level 
decreases due to absorption into sea turtles’ bodies.  

 

 
Figure 4: One-parameter bifurcation diagram for sea turtle population (𝑆) versus response intensity of toxicity 

for 0 ≤ 𝑚 ≤ 0.2 
 

 
Figure 5: One-parameter bifurcation diagram for sea turtle population (𝑃ௌ) versus response intensity of toxicity 

for 0 ≤ 𝑚 ≤ 0.2 
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Figure 6: One-parameter bifurcation diagram for sea turtle population (𝑃ா) versus response intensity of toxicity 

for 0 ≤ 𝑚 ≤ 0.2 
 

5. Conclusion 

In conclusion, we have studied the impact of marine debris on the sea turtle population in the 
context of response intensity by the sea turtles towards the toxic substance. We have done the 
analysis for the model proposed both analytically and by simulation. Our results demonstrated 
that the sea turtle population will be sustained even with a poor sensitivity to toxicity, albeit 
with a declining number of populations. This shows that the degree of reaction intensity has a 
significant impact on sea turtle survival. Therefore, understanding the model’s  dynamics at 
various levels of this response is therefore essential for efficient ecosystem management and 
conservation. 
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