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ABSTRACT  

In this study, a two-parameter lifetime model has been extended to incorporate covariate in the 
presence of right-censored data. The model has bathtub-shaped or increasing failure rate 
function which enables it to fit real lifetime data set. The method of maximum likelihood was 
used to estimate the parameters in the model and a simulation study was then conducted to 
evaluate the performance of parameter estimates at various sample sizes and censoring 
proportion levels. The results from simulation study show that larger sample sizes and smaller 
censoring proportion give better estimates. Further, two interval estimation methods: Wald 
and likelihood ratio were constructed, and the performance of these methods was evaluated 
based on a coverage probability study. Both Wald and likelihood ratio techniques appear to 
have better performance when the sample size is larger. Also, a real right-censored lifetime 
data on patients with multiple myeloma was employed to illustrate the practical application of 
the extended model.   

Keywords: bathtub-shaped; interval estimation; likelihood ratio; Wald; coverage probability 
study. 

 

ABSTRAK  

Dalam kajian ini, model jangka hayat yang mempunyai dua parameter telah dikembangkan 
dengan memasukkan kovariat dengan data yang tertapis kanan. Model tersebut mempunyai 
fungsi kadar kegagalan yang menaik ataupun berbentuk seperti tab mandi yang membolehkan 
model ini disesuaikan dengan data jangka hayat yang sebenar. Kaedah kebolehjadian 
maksimum digunakan untuk membuat anggaran parameter di dalam model ini dan seterusnya  
kajian simulasi dijalankan untuk menilai prestasi anggaran parameter pada beberapa saiz 
sampel dan kadar tapisan yang berlainan. Hasil kajian simulasi itu menunjukkan saiz sampel 
yang besar dan kadar tapisan yang kecil menghasilkan anggaran yang lebih baik. Selanjutnya, 
dua kaedah anggaran selang: Wald dan likelihood ratio telah dibina dan prestasi setiap kaedah 
tersebut dinilai melalui kajian kebarangkalian liputan. Kedua-dua kaedah Wald dan likelihood 
ratio dilihat mempunyai prestasi yang lebih baik apabila saiz sampel lebih besar. Data sebenar 
iaitu data jangka hayat tertapis kanan yang melibatkan pesakit myeloma pelbagai juga 
digunakan untuk menunjukkan aplikasi model yang telah dikembangkan ini secara praktiknya. 

Kata kunci: berbentuk tab mandi; selang keyakinan; butstrap; likelihood ratio; Wald; kaedah 
kebarangkalian liputan. 

 

1. Introduction 

In reliability analysis, failure rate or hazard function is crucial in studying the lifetime of a 
product. Lifetime distribution can be classified into five categories based on its failure rates; 
constant, decreasing, increasing, bathtub and upside-down bathtub shaped (Maurya et al. 
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2020). The well-known lifetime models such as Gamma or Weibull are those that can 
accommodate monotone failure rates, however, there are several situations in engineering or 
medical fields where the failure rates firstly decrease, then stagnant at a constant level and 
eventually increase. Such failure rate resembles a bathtub, and thus, it is known as bathtub-
shaped failure rate.   It is possible to observe the bathtub-shaped failure rate when studying 
the lifespan of an industrial product or the lifetime of a biological entity (Dimitrakopoulou et 
al. 2007). In recent decades, there were several studies that examined the distribution with 
bathtub-shaped failure rates, including those by Mudholkar and Srivastava (1993) and Smith 
and Bain (1975) among others. The Smith-Bain model was found to provide a satisfactory fit 
to the dataset on 500 MW generators discussed in Dhillon (1981), as demonstrated by 
Paranjape et al. (1985). Subsequently,  Paranjpe and Rajarshi (1986) applied the Smith-Bain 
exponential power model to dataset on bird populations discussed in Deevey (1947). This 
illustrates the applicability of the lifetime distributions with bathtub-shaped failure rates 
across various fields. 

In this paper, the distribution that was proposed by Chen (2000) for which the failure rate 
exhibits a bathtub-shape depending on its parameter (written as bathtub hazard model 
throughout this paper). Additionally, the failure rate can be monotonically increasing, 
demonstrating the flexibility of this distribution. Chen (2000) also discussed exact confidence 
intervals and joint confidence regions for the parameters in the model based on type-II 
censoring. Chen (2000) further stated that there is no two-parameter distribution that the 
failure rate exhibit bathtub-shaped. Given its useful properties, a number of studies have 
investigated and studied the bathtub hazard model. For example,  Wu et al. (2004) proposed a 
simple method for conducting statistical test with regards to the shape parameter where the 
method can be applied for a type-II right-censored data. Wu (2008) discussed exact  
confidence interval and exact join confidence region for the parameters in the bathtub hazard 
model under progressive type-II censored sample. Based on type-II censored sample, Wang et 
al. (2014) discussed interval estimations for the parameters in bathtub hazard model. Sarhan 
et al. (2012) examined parameter estimation of the bathtub hazard model by using maximum 
likelihood and Bayes method. Recently, additional work by Sarhan and Mustafa (2022) 
developed a new lifetime distribution based on  bathtub hazard model and generalized 
exponential distribution. They discussed the parameter estimation using maximum likelihood 
method and Bayesian procedures. Another recent work by Zhang and Gui (2022) and Chen 
and Gui (2020) also discussed parameter estimation of bathtub hazard model and presented 
confidence intervals for the model’s parameters. 

In summary, extensive research has been undertaken to study the bathtub hazard model. 
However, the research to date has not focused on investigating the bathtub hazard model by 
expanding the model with fixed or time-dependent covariate. Therefore, in this work, we 
conduct a study to extend the bathtub hazard model by incorporating fixed covariates with the 
presence of right-censored data. In the earlier work,  Ismail et al. (2022) examined the bathtub 
hazard model, assessing its parameter performance through a simulation study. The study also 
constructed Wald and bootstrap confidence intervals using real data on lung cancer with right-
censored observations. This present study expands the previous work by exploring an 
additional common interval estimation method based on likelihood ratio (LR) and further 
compare the performance of this method with the Wald method via a coverage probability 
study. A real dataset on multiple myeloma with right-censored observation is employed to 
demonstrate the applicability of the bathtub hazard model.  
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2. Methodology 

Bathtub hazard model with random variable T  which denoting the lifetimes has the following 
distribution function: 
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with two positive parameters, where 0  is a parameter that does not affect the shape of 
failure rate and    is defined as the shape parameter.  

The corresponding probability density function (pdf) and the survival function are 
respectively given by,  
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Accordingly, the failure rate function is given by, 
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The failure rate function becomes bathtub-like as 1   and is increasing when 
1  (Chen 2000).  

Let the parameter   be a function of the covariates to incorporate the effects of covariates 
on survival time in failure rate of the bathtub hazard model. Thus, we can express the function 
as  
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Henceforth, the failure rate function for a data set with a fixed covariate ix  where 

1, 2,...,i n  can be written as, 
 

  0 1  1 1ii i
i i i

xt th t e e t et
                                                                             (6) 

 
Let 0 1( , , )     be the vector of the model parameters. Maximum likelihood method 

was used to estimate the three parameters. The likelihood function for the full sample if there 
are no censored observations can be written as 
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In order to incorporate right-censored data to the likelihood function, a censoring indicator 
need to be defined. Hence, for the thi observation, the censoring indicator denoted by S  is 
given by, 

 
1,  observation is not censored

0,  observation is right censorediS 




 

 
Suppose it  is the observed survival time for the thi subject, the likelihood function for 

uncensored and right-censored is, 
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and the associated log-likelihood function becomes 
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The maximum likelihood estimators of all parameters can be obtained by setting the first 

derivative of the log-likelihood function equal to zero. However, explicit equations cannot be 
provided due to the complex and nonlinear forms of the equation. Therefore, a numerical 
known as Newton-Raphson method can be used to compute approximate estimates of 
parameters.  

3. Confidence Interval Estimation 

In this section, we discuss two techniques (Wald and likelihood ratio) that were used to 
construct confidence interval for each parameter in the two-parameter bathtub hazard model 
with fixed covariate in the presence of right-censored data. 

3.1.  Asymptotic interval estimation (Wald method)  

Let ̂  be the maximum likelihood estimator for the vector of parameters  and ( )  is the 

log-likelihood function of  . Under mild regularity conditions,  ̂  is asymptotically normally 

distributed with mean   and covariance matrix  I   where  I  is defined as the Fisher 

information matrix, evaluated at the true value of the parameter (Cox and Hinkley 1974). The 

matrix  I  can be estimated by the observed information matrix  ˆI   whose 
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( , )thj k element can be found from the second partial derivatives of the log-likelihood 

function evaluated at ̂ . 

If 
1 2


z is the (1 2)  quantile of the standard normal distribution, then  the asymptotic 

100(1 )%  confidence interval for j  
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3.2.  Likelihood ratio method 

For a parameter of interest  , the likelihood ratio statistic in testing the null hypothesis  

0 0:H    versus the alternative, 1 0: H  is given as follows: 

 

0
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where l is the log-likelihood function,   is known as the vector of nuisance parameters, 

ˆ ˆ( , )  is the MLE of ( , )n , and   is the restricted maximum likelihood estimator of   

under 0H . For a large sample size,  is approximately 2
(1)  under 0H  and a 100(1 )%  

confidence interval for   can be determined by finding a set of two values of 0 , for which 

0H  is not rejected at the specified significance level, that is, the values that satisfy: 
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with the lower confidence limit, L   and the upper confidence limit U  .   

4.  Simulation Study 

A simulation study using 1000N   replications with five different sample sizes, was 
conducted to assess the performance of the parameters of the bathtub hazard model with 
covariate and right-censored data. Also, the simulation study was carried out at different level 
of censoring proportion (cp). The values of the parameters 0,   and 1 were particularly set 
at 0.4, 3.3. and 0.9, respectively. The R programming language was used to conduct the 
simulation study. In this study, we apply the following simulation algorithm: 
 
(1) Generate covariate values ix  from a standard normal distribution. 
(2) Generate a sequence of random numbers iu from a standard uniform distribution on the 

unit interval (0,1) to obtain the event times, it for 1, 2,...,i n . 
(3) Generate censoring times, ic  from an exponential distribution with the value of   

would be modified to obtain the desired censoring proportion (cp).  
(4) Generate survival time it  by: 
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Table 1-3 presents the bias, SE and RMSE values for all the parameter estimates compared 

at various sample sizes and different levels of censoring proportion. The bias values decrease 
when the sample size is increased. Meanwhile, as censoring proportion increases, the bias 
values are also increasing.  

As depicted in Table 2, the value of SE decreases with increasing sample size. When the 
censoring proportion increases, the SE value also increases. Similar results can be observed 
for the RMSE values, see Table 3. This indicates better estimates can be obtained at higher 
sample size and smaller censoring proportion. 
 

Table 1: Summary of bias values for the parameter estimates at different n and cp 

Estimates n cp=0% cp=10% cp=20% cp=30% cp=40% cp=50% 

̂  

50 0.00704 0.00710 0.00744 0.00848 0.00959 0.01005 
100 0.00336 0.00373 0.00388 0.00458 0.00464 0.00545 
150 0.00165 0.00204 0.00276 0.00299 0.00300 0.003370 
200 0.00144 0.00160 0.00195 0.00216 0.00198 0.00242 
250 0.00134 0.00159 0.00171 0.00174 0.00189 0.00238 

0̂  

50 0.08089 0.08215 0.08419 0.09462 0.10769 0.11272 
100 0.03534 0.04004 0.04162 0.04749 0.04838 0.05646 
150 0.01735 0.01994 0.02619 0.02809 0.02855 0.03248 
200 0.01327 0.01432 0.01743 0.01971 0.01961 0.02444 
250 0.01188 0.01507 0.01662 0.01736 0.01802 0.01945 

1̂  

50 0.04374 0.04437 0.04638 0.05105 0.05729 0.06238 
100 0.01544 0.01666 0.01761 0.02136 0.02186 0.02187 
150 0.00926 0.01178 0.01457 0.01669 0.01941 0.02269 
200 0.00724 0.00651 0.00924 0.00997 0.00999 0.01283 
250 0.00434 0.00622 0.00747 0.00782 0.00695 0.00926 

 

Table 2: Summary of standard error (SE) values for the parameter estimates at different n and cp 

Estimates n cp=0% cp=10% cp=20% cp=30% cp=40% cp=50% 

̂  

50 0.02373 0.02431 0.02688 0.03011 0.03459 0.03862 
100 0.01661 0.01812 0.01880 0.02079 0.02141 0.02418 
150 0.01278 0.01402 0.01628 0.01799 0.01980 0.02254 
200 0.01123 0.01209 0.01360 0.01502 0.01618 0.01921 
250 0.00991 0.01060 0.01205 0.01375 0.01472 0.01685 

0̂  

50 0.35728 0.36198 0.38342 0.40408 0.43248 0.45666 
100 0.23872 0.25247 0.25742 0.27133 0.27572 0.29219 
150 0.18881 0.19776 0.21201 0.22233 0.23138 0.24467 
200 0.16253 0.16940 0.18023 0.18878 0.19467 0.21154 
250 0.14692 0.15176 0.16222 0.17269 0.17709 0.18630 

1̂  

50 0.20150 0.20247 0.21532 0.41501 0.25190 0.26988 
100 0.13423 0.14329 0.14612 0.15548 0.15948 0.17408 
150 0.09998 0.10632 0.11384 0.12149 0.13011 0.13907 
200 0.09391 0.09800 0.10615 0.11336 0.11696 0.12805 
250 0.07826 0.08226 0.08857 0.09599 0.09937 0.10945 
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Table 3: Summary of root mean square error (RMSE) values for the parameter estimates at different n and cp 

Estimates n cp=0% cp=10 cp=20 cp=30 cp=40 cp=50% 

̂  

50 0.02474 0.02532 0.02789 0.05105 0.03589 0.03990 
100 0.01694 0.01850 0.01919 0.02129 0.02190 0.02479 
150 0.01289 0.01417 0.01651 0.01824 0.02003 0.02279 
200 0.01132 0.01212 0.01374 0.01518 0.01630 0.01936 
250 0.01000 0.01072 0.01217 0.01386 0.01484 0.01700 

0̂  

50 0.36633 0.37118 0.39255 0.22987 0.44568 0.47037 
100 0.24132 0.25563 0.26076 0.27546 0.27993 0.29760 
150 0.18960 0.19877 0.21362 0.22410 0.23313 0.24681 
200 0.16307 0.17000 0.18107 0.18981 0.19565 0.21295 
250 0.14740 0.15251 0.16307 0.17356 0.17800 0.18730 

1̂  

50 0.20620 0.20727 0.22026 0.23547 0.25833 0.27699 
100 0.13511 0.14426 0.14718 0.15694 0.16097 0.17545 
150 0.10041 0.10697 0.11477 0.12263 0.13155 0.14091 
200 0.09419 0.09821 0.10655 0.11380 0.11739 0.12869 
250 0.07839 0.08250 0.08888 0.09630 0.09961 0.10984 

5. Coverage Probability Study 

A coverage probability study was carried out to assess and compare the performance of Wald, 
and likelihood ratio (LR) confidence interval using 1000N  replication of 7 different 
sample sizes 30, 40,50,100,150, 200,n  and 250 . In addition, three levels of censoring 
proportion were used. The study was conducted at two nominal probabilities, 0.05  and 
0.1 . A coverage probability error of a confidence interval is the probability that the interval 
range contains the true value of parameter. The estimated error probabilities on the left and 
right are obtained by adding the number of times for the left (right) endpoint that is more 
(less) that the true parameter value divided by the total number of samples. Thus, the total 
error probability is merely the total of left and right error probabilities. As given in 
Doganaksoy and Schmee (1993), the standard error of the estimated coverage error 

probability is 
1

2ˆ( ) [ (1 ) / ]   se N . Following that, the interval is called anti-conservative 

(AC) if total error is greater than ˆ2.58 ( )  se , conservative (C) if the total error probability 

is smaller than ˆ2.58 ( )se  . If the larger error probability (left or right) is more than 1.5 

times the smaller one, then the interval is asymmetrical (AS). The overall performance of 
different confidence interval method is evaluated based on total numbers of anti-conservative, 
conservative and asymmetrical intervals. In coverage probability study, a good confidence 
interval is considered if it has the least number of anti-conservative, conservative and 
asymmetrical intervals. Also, the value of left and error probabilities are closer to 0.025 (0.05) 
and the value of total error probabilities is closer to nominal probability 0.05 (0.1). Table 4 
and 5 display performance of interval estimation techniques at nominal error probability of 
0.05 and 0.1, respectively.  
 
 
 
 
 
 
 
 



 
Idari Ismail, Jayanthi Arasan, Mohd Shafie Mustafa, & Muhammad Aslam Mohd Safari 

96 

Table 4: Performance of interval estimation techniques at different n and cp for 0.05   

n Technique AC 
cp=0% 

C AS AC 
cp=5% 

C AS AC 
cp=10% 

C AS 
 Wald 1 0 2 1 0 2 1 0 1 

30 LR 3 0 1 3 0 1 3 0 1 
 Wald 0 0 3 0 0 3 0 0 3 

40 LR 2 0 1 2 0 1 2 0 1 
 Wald 0 0 2 1 0 3 0 0 3 

50 LR 2 0 1 2 0 1 2 0 1 
 Wald 0 0 1 0 0 1 1 0 2 

100 LR 1 0 1 1 0 1 1 0 1 
 Wald 0 0 2 0 0 2 0 0 1 

150 LR 1 0 1 1 0 1 1 0 1 
 Wald 0 0 2 0 0 1 0 0 1 

200 LR 1 0 1 1 0 1 0 0 1 
 Wald 0 0 3 0 0 2 0 0 3 

250 LR 1 0 1 1 0 1 1 0 1 
 

Table 5: Performance of interval estimation techniques at different n and cp for 0.1   

n Technique AC 
cp=0% 

C AS AC 
cp=5% 

C AS AC 
cp=10% 

C AS 
 Wald 1 0 2 1 0 2 1 0 3 

30 LR 3 0 1 3 0 1 3 0 1 
 Wald 0 0 3 0 0 3 0 0 3 

40 LR 3 0 1 3 0 1 3 0 1 
 Wald 0 0 1 0 0 2 0 0 3 

50 LR 2 0 1 2 0 1 2 0 1 
 Wald 0 0 1 0 0 1 0 0 1 

100 LR 2 0 1 2 0 1 2 0 1 
 Wald 0 0 1 0 0 1 0 0 1 

150 LR 1 0 1 1 0 1 1 0 1 
 Wald 0 0 1 0 0 1 0 0 1 

200 LR 2 0 1 1 0 1 1 0 1 
 Wald 0 0 1 0 0 1 0 0 2 

250 LR 0 0 1 2 0 1 2 0 1 

 
More summarized results according to each level of censoring proportion and sample size 

are given Table 6 and 7.  

Table 6: Summary of performance for each interval estimation techniques at different cp 

  cp(%) AC 
Wald 

C AS AC 
LR 
C AS 

 0 1 0 15 11 0 7 
0.05 5 2 0 14 11 0 7 

 10 2 0 14 10 0 7 

 0 1 0 10 13 0 7 
0.1 5 1 0 11 14 0 7 

 10 1 0 14 14 0 7 

 
Referring to Table 6, the Wald method tends to generate more asymmetrical intervals 

across all levels of censoring proportion and both nominal probabilities, while also yielding 
few anti-conservative intervals. Conversely, the LR method produces many anti-conservative 
intervals at all censoring proportion levels and nominal probabilities. 

From Table 7, the Wald method works better when 50n  at both nominal levels, starting 
to produce none of anti-conservative as the sample size increases. The Wald method 
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demonstrates better performance at a nominal probability of 0.01, as indicated by the decrease 
in asymmetrical intervals generated when 50n  . In the same manner, LR method produces 
fewer anti-conservative intervals when 50n   at both nominal probabilities. The LR method 
persistently yields asymmetrical intervals, irrespective of the sample size, for both nominal 
probabilities.  

Table 7: Summary of performance for each interval estimation techniques at different n 

   Wald   LR  
  n  AC C AS AC C AS 

 30 3 0 5 9 0 3 

 40 1 0 9 6 0 3 

 50 1 0 8 6 0 3 

0.05 100 0 0 5 3 0 3 
 150 0 0 5 3 0 3 

 200 0 0 4 2 0 3 

 250 0 0 8 2 0 6 

 30 3 0 7 9 0 3 

 40 0 0 9 9 0 3 

 50 0 0 6 6 0 3 

0.1 100 0 0 3 6 0 3 

 150 0 0 3 3 0 3 

 200 0 0 3 4 0 3 

 250 0 0 4 4 0 3 

 

Table 8:  Summary of performance of Wald method for all parameters at 0.05   

   cp=0   cp=5%   cp=10%  
  n  AC C AS AC C AS AC C AS 
 
 
 
  

30 *  * *  * *  * 
40   *   * *  * 
50   * *  *   * 

100   *   *   * 
150   *   *   * 
200   *   *   * 

 250   *   *   * 
 
 
 

0  

 

30          
40   *   *   * 
50   *   *   * 

100          
150   *   *    
200          
250   *   *   * 

 
 
 

1  

 

30   *   *    
40   *   *   * 
50      *   * 

100         * 
150          
200   *       
250   *      * 
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Depicted in Table 8 and 9 are the performance of the interval estimation techniques 
according to each parameter for nominal probability of 0.05.  The asterisk (*) symbol is used 
to illustrate the occurrence of anticonservative, conservative or asymmetrical intervals at 
different level of censoring proportion and sample sizes for each parameter. The Wald method 
consistently produce asymmetrical intervals for parameter γ at all censoring proportion 
levels, see Table 8. Meanwhile, for both  0 and 1 , there are fewer asymmetrical intervals 

generated. There are few anti-conservative intervals observed for parameterγ at each 
censoring proportion levels.  

As can be seen in Table 9, LR method also consistently produces asymmetrical intervals 
for parameter   at all censoring proportion levels and sample sizes.  The occurrence of anti-
conservative intervals can be seen for parameter   at n=30 across all censoring proportion 

levels. In contrast, for parameter 0 and 1 , no asymmetrical intervals are generated across 

all sample sizes and censoring proportion levels. The presence of anti-conservative intervals 
is observed for both parameters at specific censoring proportion levels and sample sizes. 

Further aspects can be examined which is by looking at the graphical display of estimated 
error probabilities in Figure 1-3.  For  , Wald and LR show a better performance when the 

sample size is larger since the estimated left and right error probabilities are getting closer to 
2 . For both 0  and 1 , Wald and LR method also perform better as sample size is getting 

larger. In the case of LR method, the two lines representing left and right error probabilities 
for both parameter 0  and 1  coincide on the line plot due to the identical error values 

produced by the method. For 0  and 1 , the error probabilities associated with the Wald 

method appear to be slightly smaller.  
 

Table 9:  Summary of performance of LR method for all parameters at 0.05   

   cp=0   cp=5%   cp=10%  
  n  AC C AS AC C AS AC C AS 
 
 
 
  

30 *  * *  * *  * 
40   *   *   * 
50   *   *   * 

100   *   *   * 
150   *   *   * 
200   *   *   * 

 250   *   *   * 
 
 
 

0  

 

30 *   *   *   
40 *   *   *   
50 *   *   *   

100          
150 *   *   *   
200          
250 *   *   *   

 
 
 

1  

 

30 *   *   *   
40 *   *   *   
50 *   *   *   

100 *   *   *   
150          
200 *   *      
250          
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Figure 1: Estimated error probabilities for parameter   at cp=10% and 0.05   

 
Figure 2 :  Estimated error probabilities for parameter 0  at cp=10% and 0.05   

 
Figure 3: Estimated error probabilities for parameter 1  at cp=10% and 0.05   

 

6. Real Data Analysis 

In this section, a myeloma data was employed for the illustrative purpose. The data have been 
obtained from Collet (2003) which was analyzed by Krall et al. (1975). The data represent the 
survival time (in months) of 48 patients who aged between 50 and 80 years with multiple 
myeloma. Multiple myeloma is a type of blood cancer that can be characterized by the 
abnormal plasma cells, a type of white blood cell found in the bone marrow. In multiple 
myeloma, these abnormal plasma cells can crowd out the healthy blood cells in the bone 
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marrow.  While advances in treatment have improved outcomes for many patients, the disease 
can still lead to death. In the dataset, 11 (22.9%) patients were still alive at the end of the 
study contributing to right-censored survival times. Figure 4 illustrates the survival 
probabilities obtained using a non-parametric Kaplan-Meier (solid line) and based on the 
bathtub hazard model (blue dotted line). 
 

 
 

Figure 4: Plot of estimated survival probabilities based on the fitted distribution and Kaplan-Meier estimator 

 
In Figure 4, the bathtub estimates based on the bathtub hazard model appear to be roughly 

close to Kaplan-Meier estimates suggesting the bathtub hazard distribution is appropriate for 
the respective myeloma data.  

Next, we obtained the bathtub hazard model with covariate, to examine the impact of 
gender on survival time of patients with multiple myeloma.  Based on the results presented in 
Table 10, gender does not exhibit significant impact on the survival time of patients with 
multiple myeloma (p-value=0.346). Figure 5 complements the findings by providing insight 
into the comparison of survival rates in multiple myeloma patients based on gender. As 
depicted in the figure, the slight difference in survival rates between male patients 
(represented by red solid line) and female patients (indicated by the green dotted line) 
supports the previous discussion on the non-significance of covariate gender, as evidenced by 
the results in Table 10. According to Pasvolsky et al. (2023), the incidence of multiple 
myeloma is slightly higher in men compared to women, with rates of 8.8 versus 5.7 new cases 
per 100,000 persons per year, respectively. However, the influence of gender on the outcomes 
of multiple myeloma patients remains uncertain and unknown (Derman et al. 2021).  
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Table 10: MLE of multiple myeloma data  

Parameters Estimates 
(Standard Error) 

t value p-value 

  0.3137(0.0220) 14.241 16
2 10

   

0
  3.3688(0.5938) 5.673 0.0000 

1  -0.3061(0.3375) -0.907 0.346 
 

 

 
Figure 5: Survival plot (Gender) 

 
Apart from the discussion above, confidence interval estimation method can also be 

employed to assess the significance of covariate (gender) on survival time for multiple 
myeloma patients. Table 11 shows the 95% confidence intervals using the Wald method.  It is 
apparent that the confidence interval estimates for parameter 1  contains 0, implying that 

gender do not significantly impact the survival time of multiple myeloma patients.  

Table 11: 95% confidence intervals  

Parameters Wald 
  (0.2704, 0.3569) 

0
  (2.2050, 4.5326) 

1  (-0.9676,0.3554) 

 

7. Conclusion 

In this study, we extend a two-parameter bathtub hazard model by incorporating fixed 
covariate in the presence of right-censored data. The results from simulation study indicates 
that the value of bias, SE and RMSE increase with the increase in censoring proportion and 
decrease in sample size. Also, this study achieved one of its objectives of assessing the 
performance of two confidence interval estimation methods via a coverage probability study. 
Based on the preceding findings discussed in previous section, the Wald method starts to 
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perform well when 50n  . This finding corroborates the work done by (Kiani et al. 2012; 
Loh et al. 2015). The Wald method generates quite a number of asymmetrical intervals at all 
censoring proportion levels.  As discussed in Doganaksoy and Schmee (1993), Wald is known 
to be highly asymmetrical as compared to LR especially when dealing with censored data. On 
the other hand, LR method yields several anti-conservative intervals at all censoring 
proportions and sample sizes. Particularly, the occurrence of anti-conservative intervals 
produced by LR method decreases as sample size exceeds 50. In the comparison of  Wald and 
LR methods, Wald method slightly outperforms LR method at greater sample size as no anti-
conservative intervals were produced and lesser asymmetrical intervals specifically at 
nominal probability of 0.01. Arasan (2009) found that the LR method outperforms the Wald 
method when handling censored data. However, the present study utilized low censoring 
proportions of 0%, 5%, and 10%, potentially limiting the ability to assess the performance of 
LR method with higher censoring proportions. Future research is suggested to explore data 
with more complicated structures such as doubly censored data and higher censoring 
proportions. Application of the extended bathtub hazard model to the multiple myeloma data 
set has shown that the model fits the data set well. Also, we obtained bathtub hazard model 
with covariate in order to examine the significance of covariate (gender) on survival time of 
multiple myeloma patients.  
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