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ABSTRACT

The Potts–Bethe mapping is a rational function arises in the study of the Potts model on the
Cayley tree (or Bethe lattice). In this paper, the Potts–Bethe mapping of degree four is con-
sidered over the field Q5 of 5-adic numbers. In some regimes (a condition appear in the study
of p-adic Potts model), the fixed points are found and their stability are determined. It is done
by solving some quartic equation over Q5 and calculating the value of derivative at each fixed
points. This is the continuation of the previous work where contraction and chaos are found,
but here other property is realized such as 1-Lipschitz.
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ABSTRAK

Pemetaan Potts-Bethe ialah fungsi nisbah yang timbul dalam kajian model Potts pada pokok
Cayley (atau kekisi Bethe). Dalam artikel ini, pemetaan Potts–Bethe darjah empat dipertim-
bangkan di atas medan Q5 bagi nombor 5-adic. Dalam sesetengah rejim (keadaan yang muncul
dalam kajian model Potts p-adic), titik tetap ditemui dan tingkah lakunya dikelaskan. Ia di-
lakukan dengan menyelesaikan persamaan kuartik pada Q5 dan mengira nilai pembezaan di
setiap titik. Ini adalah kesinambungan kerja sebelumnya di mana pengecutan dan kekacauan
ditemui, tetapi di sini sifat lain ditemui seperti 1-Lipschitz.

Kata kunci: fungsi nisbah; nombor p-adic; titik tetap

1. Introduction

Rational function is one of the most studied functions especially in discrete dynamical system.
The iconic rational functions is the Möbius transformation (or homographic map), that is,

ϕ(z) =
az + b

cz + d
, ad− bc ̸= 0.

As iterations in discrete dynamical system, this function is well studied, for instances, over the
field C of complex number and the field Qp of p-adic numbers (Fan et al. 2014). Such studies
involve for examples the investigation on Julia and Fatou sets. The Fatou set is the maximal
open set on which ϕ is equicontinuous, whereas the Julia set is the complement of the Fatou
set. The following is the rational function that we consider in this paper. This rational function
arises in the investigation of (p-adic) Gibbs measures of the (p-adic) Potts model on the Cayley
trees (Ahmad et al. 2018, 2019).

Definition 1.1. The Potts–Bethe mapping of degree positive integer k is defined as follows

fa,b,k(x) =

(
ax+ b

x+ a+ b− 1

)k

, a ̸= 1, a+ b ̸= 0, k ≥ 1.
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If the degree k is one, then the Potts–Bethe mapping is reduced to a special case of the
Möbius transformation. Fan et al. (2014) has studied the dynamics of this transformation in
which it has a 1-Lipschitz property. Whereas, for k = 2 and k = 3, the dynamics of the Potts–
Bethe mapping was analysed by Mukhamedov and Khakimov (2016) and Ahmad et al. (2018)
respectively. In this paper, the Potts–Bethe mapping of degree four over the field Q5 of 5-adic
numbers is considered, that is, fa,b,4 : Q5 → Q5,

fa,b,4(x) =

(
ax+ b

x+ a+ b− 1

)4

, a, b ∈ Q5, a ̸= 1, a+ b ̸= 0. (1)

More general case is done by Mukhamedov and Khakimov (2018), and Khakimov and Mukhame-
dov (2022).

Throughout, fa,b means fa,b,4. The fixed points of fa,b, that is, fa,b(x) = x has a connection
with the p-adic Gibbs measure of the p-adic Potts model (Ahmad et al. 2018), and more general
context in (Mukhamedov & Khakimov 2016, 2018, 2021, 2023; Mukhamedov et al. 2023;
Rozikov et al. 2022; Rahmatullaev & Tukhtabaev 2023). There, the parameters a, b satisfy the
condition |a− 1|5 < 1 and |b+1|5 < 1. In order to find the fixed points, one has to solve some
polynomial equation which comes from the fixed point equation. Solving this equation is an
old problem and this problem is discussed recently over Qp (Mukhamedov et al. 2014; Saburov
& Ahmad 2015a,b, 2018; Saburov et al. 2021) for lower degree polynomial.

2. Preliminaries

For a fixed prime number p, the field Qp of p-adic numbers is the completion of the set Q of
rational numbers with respect to the p-adic absolute value | · |p : Q → R given by

|x|p =
{

p−κ, x ̸= 0
0, x = 0

where x = pκ
(m
n

)
with k,m ∈ Z, n ∈ N and p ̸ | mn. For any x ∈ Qp, we have x =

x∗

|x|p
such that

x∗ = x0 + x1 · p+ x2 · p2 + . . .

for x0 ∈ {1, 2, . . . , p − 1} and xi ∈ {0, 1, 2, . . . , p − 1}, ∀i ∈ N = {1, 2, 3, . . . }. Here x∗ is
the element of the p-adic unit

Z∗
p = {x ∈ Qp : |x|p = 1}

We denote the set of all fixed points of fa,b by

Fix{fa,b} = {x ∈ Q5 : fa,b(x) = x}.

It can be easily checked that x(0) = 1 ∈ Fix{fa,b}. Then it follows from fa,b(x)− 1 = x− 1
that

(x− 1)(a− 1)

(x+ a+ b− 1)4
(
(ax+ b)3 + (ax+ b)2(x+ a+ b− 1) + (ax+ b)(x+ a+ b− 1)2

+(x+ a+ b− 1)3
)
= (x− 1).
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From here, any other fixed point x ̸= x(0) is the root of the following quartic equation

(a− 1)
(
(ax+ b)3 + (ax+ b)2(x+ a+ b− 1) + (ax+ b)(x+ a+ b− 1)2

+(x+ a+ b− 1)3
)
= (x+ a+ b− 1)4 (2)

Let x = x(∞) + (a− 1)y where x(∞) = 1− a− b. Then, the quartic equation, Eq. (2), can
be written as

y4− (1+a+a2+a3)y3+(3a2+2a+1)(a+ b)y2− (3a+1)(a+ b)2y+(a+ b)3 = 0. (3)

Then we have the following consequences.

Proposition 2.1. (Ahmad et al. 2019) Let |a − 1|5 < 1 and |b + 1|5 < 1. Then the quartic
equation (3) always has four roots y(1), y(2), y(3) and y(4) such that

(i)
∣∣y(1)∣∣

5
= 1 and

∣∣y(1) − 4
∣∣
5
< 1,

(ii) y(2) =
1

|a+ b|5

(
y
(2)
0 + y

(2)
1 5 + . . .

)
where 2y

(2)
0 − (a+ b)∗ ≡ 0 (mod 5),

(iii) y(3) =
1

|a+ b|5

(
y
(3)
0 + y

(3)
1 5 + . . .

)
and y(4) =

1

|a+ b|5

(
y
(4)
0 + y

(4)
1 5 + . . .

)
where

y
(3)
0 and y

(4)
0 are roots of the congruence

2t2 − 2(a+ b)∗t+ ((a+ b)∗)2 ≡ 0 (mod 5). (4)

Thus we have

Fix {fa,b} =
{
x(0), x(1), x(2), x(3), x(4)

}
where x(0) = 1, x(∞) = 1− a− b, and x(i) = x(∞) + (a− 1)y(i) for i = 1, 2, 3, 4.

Since there the derivative for the Potts–Bethe mapping exists, we have the following defini-
tion.

Definition 2.2. Let λ = f ′
a,b(x0). The fixed point x0 is called attracting, indifferent, and

repelling fixed point if |λ|p < 1, |λ|p = 1, and |λ|p > 1 respectively. Moreover, the fixed point
is stable if |λ|p < 1.

The following is the definition of 1-Lipschitz property.

Definition 2.3. Let N ⊂ Qp. Then the function fa,b has 1-Lipschitz property on N if for any
x, y ∈ N ,

|fa,b(x)− fa,b(y)|p = |x− y|p.

3. Classification of the Fixed Points

Theorem 3.1. Consider the fixed point set Fix {fa,b} =
{
x(0), x(1), x(2), x(3), x(4)

}
of the

Potts–Bethe mapping (Eq. (1)).

(1) Let 0 < |a− 1|5 < |b+ 1|5 < 1. Then

(i) x(0) is an attracting fixed point;
(ii) x(1), x(2), x(3), and x(4) are repelling fixed points.
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(2) Let 0 ≤ |b+ 1|5 < |a− 1|5 < 1. Then

(i) x(0) and x(1) are indifferent fixed points;
(ii) x(2), x(3) and x(4) are repelling fixed points.

(3) Let 0 < |a+ b|5 < |a− 1|5 = |b+ 1|5 < 1. Then

(i) x(1) is an attracting fixed point;
(ii) x(0), x(2), x(3) and x(4) are repelling fixed points.

(4) Let 0 < |a+ b|5 = |a− 1|5 = |b+ 1|5 < 1. Then

(i) x(0) and x(1) are indifferent fixed points;
(ii) x(2), x(3) and x(4) are repelling fixed points.

Proof. For 0 ≤ i ≤ 4, we have

f ′
(
x(i)

)
=

4(a− 1)(a+ b)(ax(i) + b)3

(x(i) + a+ b− 1)5
=

4(a− 1)(a+ b)x(i)

(ax(i) + b)(x(i) + a+ b− 1)
. (5)

One could calculate

∣∣∣f ′
(
x(0)

)∣∣∣
5
=



|a− 1|5
|b+ 1|5

< 1, if 0 < |a− 1|5 < |b+ 1|5 < 1;

|a− 1|5
|a− 1|5

= 1, if 0 ≤ |b+ 1|5 < |a− 1|5 < 1;

|a− 1|5
|a+ b|5

= 1, if 0 < |a+ b|5 = |a− 1|5 = |b+ 1|5 < 1;

|a− 1|5
|a+ b|5

> 1, if 0 < |a+ b|5 < |a− 1|5 = |b+ 1|5 < 1.

Next, we substitute x(i) = x(∞) + (a− 1)y(i) for i = 1, 2, 3, 4 into (5) and obtain

f ′
(
x(i)

)
=

4(a+ b)x(i)

(a− 1)y(i)
(
ay(i) − (a+ b)

) . (6)

By Proposition 2.1-(i), it can be easily derived

∣∣∣f ′
(
x(1)

)∣∣∣
5
=



|b+ 1|5
|a− 1|5

> 1, if 0 < |a− 1|5 < |b+ 1|5 < 1;

|a− 1|5
|a− 1|5

= 1, if 0 ≤ |b+ 1|5 < |a− 1|5 < 1;

|a− 1|5
|a+ b|5

= 1, if 0 < |a+ b|5 = |a− 1|5 = |b+ 1|5 < 1;

|a+ b|5
|a− 1|5

< 1, if 0 < |a+ b|5 < |a− 1|5 = |b+ 1|5 < 1.

Furthermore, by using Proposition 2.1-(ii) and -(iii), we get

f ′
(
x(i)

)
=

4(a+ b)|a+ b|25x(i)

(a− 1)
(
y(i)

)∗ (
a
(
y(i)

)∗ − (a+ b)∗
) , i = 2, 3, 4. (7)
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Moreover, one can easily checked that a
(
y(i)

)∗ ≡ (
y(i)

)∗ ̸≡ (a+ b)∗ (mod 5) for i = 2, 3, 4.
Consequently,

∣∣∣f ′
(
x(i)

)∣∣∣
5
=



1

|a− 1|5|b+ 1|5
> 1, if 0 < |a− 1|5 < |b+ 1|5 < 1;

1

|a− 1|25
> 1, if 0 ≤ |b+ 1|5 < |a− 1|5 < 1;

1

|a− 1|5|a+ b|5
> 1, if 0 < |a+ b|5 = |a− 1|5 = |b+ 1|5 < 1;

1

|a− 1|5|a+ b|5
> 1, if 0 < |a+ b|5 < |a− 1|5 = |b+ 1|5 < 1.

By these calculations, we conclude the proof. □

Remark that a part of this theorem, Theorem 3.1-(1), is the results from Ahmad et al. (2019).
Ahmad et al. (2019) characterise the dynamics of the Potts–Bethe mapping (Eq. (1)) as the con-
traction and chaos using the methods by Fan et al. (2007) and Fan and Liao (2018). Meanwhile
in this paper we classify all cases, that is, for |a − 1|5 < 1 and |b + 1|5 < 1. Ahmad et al.
(2019) did not consider these cases because their aim is to show the existence of chaos. In the
meantime, in this paper, we want to further study the dynamics of the Potts–Bethe mapping for
all cases. Here we have the situation where the fixed points are indifferent, Theorem 3.1-(2) and
3.1-(4). This shows that the Potts–Bethe mapping has 1-Lipschitz property over some domian.
It follows directly where for any x, y ∈ N

|fa,b(x)− fa,b(y)|p =
∣∣∣f ′

(
x(i)

)∣∣∣
p
|x− y|p = |x− y|p.

for i = 0, 1. The domain N is the largest neighborhood of x(i) which satifies 1-Lipschitz
property. In future work, using this 1-Lipshitz property, one can characterize completely the
dynamics, comparing to Fan et al. (2014, 2017).
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