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ABSTRACT  

In this work, we explore seven chaos-related notions in dynamical systems: locally everywhere 

onto, mixing, totally transitive, strong dense periodicity, blending, specification, and Devaney 

chaos. We analyze their interrelations, proving positive connections and providing 

counterexamples for negative ones. Our findings establish a hierarchy among these chaos 

characterizations, with the specification property at the top and blending, transitivity, and strong 

dense periodicity at the bottom in compact spaces. In shifts of finite type, these properties are 

equivalent, but this equivalence does not hold in shifts of infinite type. 

Keywords: Devaney chaos; locally everywhere onto; totally transitivity; topologically mixing; 

strong dense periodic points; blending  

 

ABSTRAK  

Dalam kajian ini, kami meneroka tujuh konsep berkaitan kekalutan dalam sistem dinamik: sifat 

keseluruh setempat di mana-mana, pencampuran, transitif sepenuhnya, sifat berkalala tumpat 

yang kuat, pencampuran, spesifikasi, dan kekalutan Devaney. Kami menganalisis hubungan 

antara konsep-konsep ini dengan membuktikan hubungan positif dan memberikan contoh 

penyangkal untuk hubungan negatif. Penemuan kami menunjukkan hierarki antara ciri-ciri 

kekacauan ini, dengan sifat spesifikasi berada di puncak, manakala sifat pencampuran, 

transitiviti, dan sifat berkala tumpat yang kuat berada di kedudukan terendah dalam ruang padat. 

Dalam ruang anjakan jenis terhingga, sifat-sifat ini adalah setara, tetapi kesetaraan ini tidak 

berlaku dalam anjakan jenis tidak terhingga. 

Kata kunci: kekalutan Devaney; keseluruh setempat di mana-mana; transitif sepenuhnya; 

pencampuran secara bertopologi; berkala tumpat yang kuat; pencampuran 

                       

1. Introduction  

Beginning with the ingredients of Devaney chaos (transitivity, a dense set of periodic points, 

and sensitive dependence on initial conditions) (Devaney 2003), mathematicians have been 

developing the chaos theory of dynamical systems. Some researchers have focused on 

transitivity as a main ingredient of chaos. Consequently, by strengthening or weakening the 

condition of transitivity, many strong versions of transitivity were proposed, such as totally 

transitive, mixing, and locally everywhere onto (l.e.o.), with all these concepts being stronger 

than transitivity. Effah-Poku et al. (2018) considered systems with at least two of these 

properties are considered to be chaotic in a certain sence;  bifurcation and period doubling, 

period three, transitivity and dense orbit, sensitive dependence to initial conditions, and 

expansivity. In 2022, Wong and Salleh (2022) studied the dynamical properties of set-valued 

dynamical systems; sensitivity, transitivity and mixing. They defined sensitivity on the set-

valued dynamical systems and studied its properties. Recently Han et al. (2023) studied chaotic 

properties in memristive systems with details analysis of sensitivity and periodic points.    
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Other researchers have focused on the condition of dense periodic points. Dzul-Kifli and 

Good (2015) introduced the concept of the strong dense periodicity property (𝑃𝑛 dense for all 

𝑛). Considering l.e.o. and 𝑃𝑛 dense for all 𝑛 as significant chaos characterizations, Baloush and 

Dzul-Kifli (2016) showed that l.e.o. implies chaos characterizations such as topologically 

mixing, totally transitive, and blending. On 1-step shifts of finite type over two symbols, l.e.o. 

and 𝑃𝑛 dense for all 𝑛 are equivalent (Baloush et al. 2016). Dzul-Kifli and Al-Muttairi (2015) 

have shown that for a shift of finite type over two symbols, the property of 𝑃𝑛 dense for all 𝑛 

implies l.e.o. and totally transitive. However, the complete relations between the above-

mentioned chaos notions, i.e., totally transitive, topologically mixing, locally everywhere onto, 

𝑃𝑛 dense for all 𝑛, Devaney chaos (DevC), (weakly) blending, and some other notions such as 

the specification property, have not been figured out until now. In this work, we investigate all 

relations between these chaos notions in compact spaces and shift spaces. We then provide 

hierarchy diagrams of these chaos characterizations in compact spaces and shifts of finite type 

(SFT). Finally, we highlight the differences in the relations between these chaos 

characterizations from SFT to shifts of infinite type (SIFT). Here are the definitions of the chaos 

properties: 

 

Definition 1.1.  A dynamical space (𝑋, 𝑓) is said to be topologically transitive if for any 

nonempty open subsets 𝑈, 𝑉 ⊂ 𝑋 , there exists   𝑛 > 0  such that  𝑓𝑛(𝑈) ∩ 𝑉 ≠ ∅  (Devaney 

2003). 

 

Definition 1.2.  A dynamical space (𝑋, 𝑓)is said to be totally transitive if 𝑓𝑛 is transitive for all 

𝑛 ≥ 1 (Sabbaghan & Damerchiloo 2011). 

 

Definition 1.3.  A function 𝑓: 𝑋 → 𝑋 is said to be topologically mixing if for any nonempty 

open sets 𝑈, 𝑉 ⊂ 𝑋, there exists an 𝑁 ∈  ℕ such that 𝑓𝑛(𝑈) ∩ 𝑉 ≠ ∅ for all 𝑛 > 𝑁 (Denker et 

al. 1976). 

 

Definition 1.4.  A dynamical space (𝑋, 𝑓) is said to be locally everywhere onto (l.e.o. for short) 

if for every open set 𝑈 ⊆ 𝑋 there exists a positive integer 𝑛 such that 𝑓𝑛(𝑈) = 𝑋 (Good et al. 

2006). 

 

Definition 1.5.  A dynamical space (𝑋, 𝑓) is said to be (weakly) blending if for any pair of 

nonempty open sets 𝑈 and 𝑉 in 𝑋, there exists an 𝑛 > 0 such that 𝑓𝑛(𝑈) ∩ 𝑓𝑛(𝑉) ≠ ∅, and 

strongly blending if for any pair of nonempty open sets 𝑈 and 𝑉 in 𝑋, there is some 𝑛 > 0 such 

that 𝑓𝑛(𝑈) ∩ 𝑓𝑛(𝑉) contains an open set (Crannell 1995). 

 

Definition 1.6.  (Baloush et al. 2016) A dynamical space (𝑋, 𝑓) , has the strong dense 

periodicity property if the set of periodic points 𝑃𝑛 is dense in 𝑋, where 

 

𝑃𝑛 = {𝑥 ∈ 𝑋: 𝑥 is a periodic point of prime period 𝑘 for some 𝑘 ≥ 𝑛 }. 
 

For convenience, we may also refer to this property as having 𝑃𝑛 dense for all 𝑛 ∈ ℕ. 

 

Definition 1.7.  A dynamical system (𝑋, 𝑓) has the specification property (briefly, Sp) if for 

any 𝜖 > 0 there exists an integer 𝑀𝜖 such that for any 𝑘 ≥ 2, for any 𝑘 points 𝑥1, … , 𝑥𝑘 ∈ 𝑋, 

for any integers 𝑎1 ≤ 𝑏1 < 𝑎2 ≤ 𝑏2 < ⋯ < 𝑎𝑘 ≤ 𝑏𝑘  with 𝑎𝑖 − 𝑏𝑖−1 ≥ 𝑀𝜖  for 2 ≤ 𝑖 ≤ 𝑘 and 
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for any integer 𝑝 with 𝑝 ≥ 𝑀𝜖 + 𝑏𝑘 − 𝑎1, there exists a point 𝑥 ∈ 𝑋 with 𝑓𝑝(𝑥) = 𝑥 such that 

𝑑(𝑓𝑛(𝑥), 𝑓𝑛(𝑥𝑖)) ≤ 𝜖 for 𝑎𝑖 ≤ 𝑛 ≤ 𝑏𝑖, 1 ≤ 𝑖 ≤ 𝑘 (Bowen 1971). 

2. Implication Relation between Chaos Characterizations on Compact Spaces 

In this section, we present the complete relationships among the seven chaos characterizations 

mentioned above for the dynamical system (𝑋, 𝑓) , where f is a continuous function on a 

compact space X. We found that the relations among weakly blending, strong dense periodicity 

property, totally transitive, Devaney chaos, topologically mixing, locally everywhere onto, and 

the specification property form a hierarchy based on their ability to imply other chaos 

characterizations, as shown in Figure 1. 

 

 
Figure 1: Hierarchy of chaos characterizations based on their ability to imply others 

 

The specification property is at the top of the hierarchy since this chaos characterization 

implies the other five chaos properties, i.e., topologically mixing, DevC, weakly blending, 

totally transitive, and a strong dense periodicity property. The implication relations are 

represented by the white arrows shown in the hierarchy diagram. However, the specification 

property does not imply locally everywhere onto, and therefore no arrow from specification 

property to locally everywhere onto appears in the hierarchy. Theorems and counterexamples 

are provided in this section to support these implication relations. As we look further into the 

hierarchy, there are five other levels, as shown and explained in Figure 1. Locally everywhere 

onto, topologically mixing, and Devaney chaos belong to the second, third, and fourth levels of 

the hierarchy, respectively, and the chaos characterizations implied or not implied by these 

characterizations are indicated by the existence of white arrows. Weakly blending, totally 

transitive, and a strong dense periodicity property are at the lowest level of the hierarchy 

because they do not imply any other chaos characterization. 

The first chaos characterization to look at is l.e.o. 

 

Theorem 2.1.  𝑙. 𝑒. 𝑜 implies topologically mixing, totally transitive but does not imply 𝐷𝑒𝑣𝐶 

nor 𝑃𝑛 dense for all 𝑛 (Baloush & Dzul-Kifli 2017). 

 



Malouh Baloush & Syahida Che Dzul-Kifli 

 

138 

Theorem 2.2.  𝑙. 𝑒. 𝑜 implies weakly blending. 

 

Proof.  To show that  𝑙. 𝑒. 𝑜 implies weakly blending, let 𝑈, 𝑉 be any two nonempty open sets 

in 𝑋. Since 𝑓 is 𝑙. 𝑒. 𝑜, then there exists 𝑛1, 𝑛2 > 0 such that 

 

𝑓𝑛1(𝑈) = 𝑓𝑛2(𝑉) = 𝑋. 

 

Without loss of generality, let 𝑛1 > 𝑛2. Then 

 

𝑓𝑛1(𝑈) = 𝑓𝑛1(𝑉) = 𝑋.  
 

So  

 

𝑓𝑛1(𝑈) ∩ 𝑓𝑛1(𝑉) = 𝑋.  
 

Since 𝑋  is an open set, and since 𝑓𝑛1(𝑈) ∩ 𝑓𝑛1(𝑉) ≠ ∅  for some 𝑛 > 0,  then 𝑓 is weakly 

blending.  

 

Example 2.3.  Let 𝑛 ∈ ℕ  and 𝑍𝑛+1  be a cyclic group with 𝑛 + 1  elements. Let 𝑋𝑛 =
(ℤ𝑛+1)

∞ = {(𝑥𝑚)𝑚=1
∞ : 𝑥𝑚 ∈ ℤ𝑛+1,𝑚 ∈ ℕ}  be the product topological space of countably 

infinite copies of 𝑍𝑛+1, where 𝑍𝑛+1 endowed with the discrete topology. It is well known that 

𝑋𝑛 is an compact, perfect and has countable base containing clopen sets.  We can choose this 

base to be consist of cylinder sets, i.e.,  

 
[𝑧1, ⋯ , 𝑧𝑘] = {(𝑥𝑚)𝑚=1

∞ ∈ 𝑋𝑛: 𝑥1 = 𝑧1,⋯ , 𝑥𝑘 = 𝑧𝑘}  
 

where 𝑘 ∈ ℕ and 𝑧1, ⋯ , 𝑧𝑘 is an arbitrary sequence of elements of  ℤ𝑛+1 of length 𝑘. Define 

the map 𝑓𝑛: 𝑋𝑛 → 𝑋𝑛, by 𝑓𝑛((𝑥𝑚)𝑚=1
∞ ) = (𝑦𝑚)𝑚=1

∞ , where  

 

𝑦𝑚 = {
𝑥𝑚+1 

1 + 𝑥𝑚+1
 
if  

if  

𝑥1 ≠ 𝑥𝑛+1
𝑥1 = 𝑥𝑛+1

   

 

for all 𝑚 ∈ ℕ. 
 

Lemma 2.4.  (Guirao et al. 2009) Let   𝑛 ∈ ℕ, and 𝑓𝑛 be the function defined in Example 2.3. 

Then  

(1) 𝑓𝑛 is continuous, 

(2) 𝑓𝑛 has no periodic points with prime period 𝑛, 

(3) if 𝑛 ≥ 3, then 𝑓𝑛 has the 𝑆𝑝, 

(4) 𝑓𝑛 is 𝑙. 𝑒. 𝑜. 

 

Theorem 2.5.  𝑙. 𝑒. 𝑜 does not imply the 𝑆𝑝. 

 

Proof.  Consider the function 𝑓𝑛
𝑛 where 𝑓𝑛 is defined in Example 2.3. By Lemma 2.4, since 𝑓𝑛 

is 𝑙. 𝑒. 𝑜, so does 𝑓𝑛
𝑛. Since 𝑓𝑛 has no periodic points with prime period 𝑛, so 𝑓𝑛

𝑛 has no fixed 

points. By Sharkovsky’s, 𝑓𝑛
𝑛 does not have any periodic point. Hence 𝑓𝑛

𝑛 is not 𝐷𝑒𝑣𝐶  nor has 

𝑃𝑛 dense for all 𝑛. Also since 𝑓𝑛
𝑛 has no periodic points, then it does not satisfy the definition 

of the 𝑆𝑝, hence 𝑓𝑛
𝑛 dose not have the 𝑆𝑝.  
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Next, we move to the weakly blending property and the following are counterexamples to 

show why weakly blending does not imply any other chaos characterizations. 

 

Example 2.6.  Consider the function  

 

𝑓(𝑥) =

{
 
 

 
 −2𝑥 − 2 𝑖𝑓 1 ≤ 𝑥 ≤ −

1

2

2𝑥 𝑖𝑓 |𝑥| <
1

2

2 − 2𝑥 𝑖𝑓
1

2
≤ 𝑥 ≤ 1

  

 

which defined on the interval [−1, 1] (Crannell 1995). 

 

Lemma 2.7.  𝑓 is weakly blending but not topologically transitive. 

 

Proof.  The map 𝑓 is weakly blending since every open subinterval of [−1,1] eventually maps 

onto an interval which contains the fixed point of 𝑓 which is located at the origin. To prove that 

𝑓 is not topologically transitive, let 𝑈 = (0, 1)  and 𝑉 = (−1,0), then for any positive integer 

𝑛, 𝑓𝑛(𝑈) = 𝑓𝑛(0,1) = (0,1).  Hence, 𝑓𝑛(𝑈) ∩  𝑉 = ∅ , for all 𝑛 > 0 . Therefore 𝑓  is not 

topologically transitive.        

  

Theorem 2.8.  Weakly blending does not imply the 𝑆𝑝, 𝑙. 𝑒. 𝑜, topologically mixing, Devaney 

chaos and totally transitive. 

 

Proof. We will consider the map 𝑓 as defined in Example 2.6. By Lemma 2.7, 𝑓 is weakly 

blending but not topologically transitive. Since 𝑓 is not topologically transitive, then it is not 

𝐷𝑒𝑣𝐶, 𝑙. 𝑒. 𝑜,  topologically mixing, totally transitive, nor has the 𝑆𝑝  because transitivity is 

weaker then  𝑙. 𝑒. 𝑜,  topologically mixing, totally transitive, and the 𝑆𝑝. Therefore, weakly 

blending does not imply  𝑙. 𝑒. 𝑜,  topologically mixing, totally transitive, 𝐷𝑒𝑣𝐶 and neither the 

𝑆𝑝.  

 

Theorem 2.9.  Weakly blending does not imply 𝑃𝑛 dense for all 𝑛.  

 

Proof.  Consider the map 𝑓𝑛
𝑛 where 𝑓𝑛 is defined in Example 2.3. By Theorem 2.5, we proved 

that 𝑓𝑛
𝑛  is 𝑙. 𝑒. 𝑜  but does not have 𝑃𝑛  dense for all 𝑛 . Since 𝑓𝑛

𝑛 is 𝑙. 𝑒. 𝑜 , then it is weakly 

blending by Theorem 2.2. Hence 𝑓𝑛
𝑛 is weakly blending but does not have  𝑃𝑛 dense for all 𝑛. 

Therefore, weakly blending does not imply  𝑃𝑛 dense for all 𝑛.  

  

Next, we move to the property of totally transitive, as follows. 

 

Theorem 2.10.  Totally transitive does not imply 𝑙. 𝑒. 𝑜, topologically mixing, 𝐷𝑒𝑣𝐶 nor 𝑃𝑛 

dense for all 𝑛 (Baloush & Dzul-kifli 2017). 

 

Example 2.11.  The irrational rotation Rα: S1 → S1 is defined on unit circle by Rα: θ → θ +

α (mod 2π) where θ ∈ S1, and 
α

2π
∈ ℝ\ℚ. 

 

Theorem 2.12.  Totally transitive does not imply weakly blending. 
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Proof.  To prove this theorem, we will consider the irrational rotation 𝑅𝛼: 𝑆1 → 𝑆1 as defined 

in Example 2.11 and show that 𝑅𝛼 is totally transitive but not weakly blending. Let 𝜃 ∈ 𝑆1, 
since the orbit of 𝜃, 𝑂+(𝜃) is a sequence bounded by 0 and 2𝜋, so it must have a convergent 

subsequence. Hence, for 𝜖 > 0, there exist positive integers  𝑟 and 𝑠 with 

 

|𝑅𝛼
𝑠 (𝛼) − 𝑅𝛼

𝑟(𝛼)| < 𝜖.  
 

If we let 𝑚 = 𝑟 − 𝑠, where 𝑟 > 𝑠,  then since 𝑅𝛼 preserves arc lengths, we have 

 

 |𝑅𝛼
𝑚(𝜃) − 𝜃| = |𝑅𝛼

𝑠(𝑅𝛼
𝑚(𝜃)) − 𝑅𝛼

𝑠 (𝜃)| = |𝑅𝛼
𝑠 (𝛼) − 𝑅𝛼

𝑟(𝛼)| < 𝜖.  
 

Let us now see the behaviour of the arc (𝜃, 𝑅𝛼
𝑚(𝜃)) under 𝑅𝛼

𝑚(𝜃), 

 

|𝑅𝛼
𝑚(𝑅𝛼

𝑚(𝜃) − 𝜃)| = |𝑅𝛼
2𝑚(𝜃) − 𝑅𝛼

𝑚(𝜃)| < 𝜖  
 

and 

 
|𝑅𝛼
𝑚(𝑅𝛼

2(𝜃) − 𝑅𝛼
𝑚(𝜃))| = |𝑅𝛼

3𝑚(𝜃) − 𝑅𝛼
2𝑚(𝜃)| < 𝜖  

 

and so on. So 

 

𝑂+(𝜃) = 𝜃,  𝑅𝛼
𝑚(𝜃),  𝑅𝛼

2𝑚(𝜃),  𝑅𝛼
3𝑚(𝜃),⋯,  

 

which partitions the circle 𝑆1  into arcs of length less than 𝜖.  Since we let 𝜖 be arbitrary small, 

we can choose any open arc 𝑉 such that 𝜖 is less than the length of  𝑉. Then 𝑂+(𝜃) intersects 

𝑉 and so 𝑅𝛼 is transitive. Since 𝑅𝛼
𝑚 = 𝑅𝑚𝛼 for any integer 𝑚 > 0, and 𝑚𝛼 is also irrational 

relative to 2𝜋, then 𝑅𝛼 is totally transitive. To show that 𝑅𝛼 is not weakly blending, let 𝑈 and 

𝑉 be any two open sets such that 𝑈 ∩ 𝑉 = ∅.  Observe that the irrational rotation 𝑅𝛼  is an 

isometry, so it preserves lengths, i.e., 𝑑(𝑥, 𝑦) = 𝑑(𝑅𝛼(𝑥), 𝑅𝛼(𝑦)). So if for every 𝑥 ∈  𝑈 and 

for every 𝑦 ∈  𝑉, 𝑑(𝑥, 𝑦) = 𝜖,  then  for any 𝑛 > 0 , we have 𝑑(𝑅𝛼
𝑛(𝑥), 𝑅𝛼

𝑛(𝑦)) = 𝜖,  which 

means that, points that are close together stay close together under a rotation map. Hence for 

every 𝑛 > 0, we obtain 𝑅𝛼
𝑛(𝑈) ∩ 𝑅𝛼

𝑛(𝑉) = ∅. Therefore,  𝑅𝛼  is not weakly blending.  
  

Theorem 2.13.  Totally transitive does not imply the 𝑆𝑝. 

 

Proof.  Consider the function 𝑓𝑛
𝑛 where 𝑓𝑛 is defined in Example 2.3. By Theorem 2.5, we 

proved that 𝑓𝑛
𝑛 is 𝑙. 𝑒. 𝑜 but does not have the  𝑆𝑝, and then by Theorem 2.1, we conclude that 

totally transitive does not imply the 𝑆𝑝.  

 

The next chaos characterization to look at is the strong dense periodicity property i.e., 

whenever the set 

 

𝑃𝑛 = {𝑥 ∈ 𝑋: 𝑥 𝑖𝑠 𝑎 𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐 𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 𝑝𝑟𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 𝑘 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑘 ≥ 𝑛 }.  
 

is dense for all 𝑛. 

 

Theorem 2.14.  𝑃𝑛 is dense for all 𝑛 does not imply  𝑙. 𝑒. 𝑜, 𝐷𝑒𝑣𝐶, totally transitive, neither 

topologically mixing (Baloush & Dzul-Kifli 2017). 
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Example 2.15.  Let  𝑓: 𝑆1 × [0,1] → 𝑆1 × [0,1] be defined as 𝑓(𝜃, 𝑎) = (𝜃 + 2𝜋𝑎, 𝑎). 
 

Theorem 2.16.  𝑃𝑛 is dense for all 𝑛 does not imply weakly blending. 

 

Proof.  To proof this theorem, we will consider the function 𝑓: 𝑆1 × [0,1] → 𝑆1 × [0,1]   as 

defined in Example 2.15 and show 𝑓 that has 𝑃𝑛 dense for all 𝑛, but is not weakly blending. To 

show that 𝑃𝑛 is dense for all 𝑛, we must prove that for every 𝑛, every open subset 𝐴 × 𝐵 ⊂
 𝑆1 × [0,1] contains a periodic point of prime period greater or equal to 𝑛. We claim that for 

every 𝑛 there exists an integer 𝑞 ≥  𝑛 such that 
𝑝

𝑞
∈  𝐵 for some integer 𝑝 (𝑝 is neither 𝑞 nor 1).  

Let  𝑞 >  2 be large enough such that when we partition [0,1] into 𝑞 sub-intervals with the 

same length, then there exists endpoint (except 0 and 1) of the sub-interval which lies in 𝐵 of 

the form  
𝑝

𝑞
  where 𝑝 =  1, 2, … , 𝑞 −  1. Therefore, for every 𝑛, there exists 𝑞 ≥  𝑛 and 𝑞 ≠  2 

such that (𝜃,
𝑝

𝑞
) ∈  𝐴 ×  𝐵 for any 𝜃 ∈  𝐴 and 𝑝 =  1, 2, … , 𝑞 −  1. Then 

 

𝑓𝑞 (𝜃,
𝑝

𝑞
) = (𝜃 + 𝑞 (2𝜋

𝑝

𝑞
) ,

𝑝

𝑞
)  

 = (𝜃 + 2𝜋𝑞,
𝑝

𝑞
) 

= (𝜃,
𝑝

𝑞
)     

 

where 𝑞 is a prime period for (𝜃,
𝑝

𝑞
). If not then there exists  𝑘 <  𝑞 such that 

2𝑘𝜋𝑝

𝑞
 is an integer, 

i.e., either 𝑞 =  2, 𝑞 =  𝑘 or 𝑞 =  𝑝, which is a contradiction. Hence, (𝜃,
𝑝

𝑞
) is a periodic point 

of prime period 𝑞 and then 𝑃𝑛 is dense for every  𝑛. Now  𝑓  is a rotation by an angle of 2𝜋 on 

the unit circle at axis −𝑎, 𝑆1 × {𝑎}. So, 𝑓 does not behave as a chaotic system since every point 

only moves regularly within its own circle at the same axis. Since 𝑓 fixes 𝑆1 × {𝑎} for all 𝑎 ∈
 [0,1],  take 𝑈 and 𝑉 such that 

 

𝑈 = 𝑆1 × (0,
1

4
) 𝑎𝑛𝑑 𝑉 = 𝑆1 × (

1

2
, 1).  

 

Then 𝑓𝑛(𝑈) ∩ 𝑓𝑛(𝑉) = 𝜙, for all 𝑛 > 0. So, this system is not weakly blending.   

 

Example 2.17. (Dzul-Kifli & Good 2015) Let D = {reiθ ∈ ℂ: r ∈ [0,1], θ ∈ [0, 2π)} be the 

closed unit disk in the complex plane. Define f: D → D by f(reiθ) = rei(θ+2rπ).  Then f is a 

homeomorphism of D and the restriction fr of f to Cr = {z: |z| = r} is a rotation of order r.  
 

Lemma 2.18.  Let 𝑓 and 𝐷 are as defined in Example 2.17, then (𝑓, 𝐷) has 𝑃𝑛 is dense for all 

𝑛 but not transitive (Dzul-Kifli & Good 2015). 

 

Theorem 2.19.  𝑃𝑛 is dense for all 𝑛 does not imply the 𝑆𝑝. 
 

Proof.  We will consider 𝑓:𝐷 → 𝐷 as defined in Example 2.17. By Lemma 2.18, 𝑓 has 𝑃𝑛 is 

dense for all 𝑛 and since 𝑓 is not transitive, then it does not have the 𝑆𝑝 because transitivity is 

weaker than the 𝑆𝑝.  Therefore  𝑓  is the counterexample to prove this theorem.  
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Now we look at the Devaney chaos and consider the following example. 

 

Example 2.20.  Let f: [0,1] → [0,1] be defined by 

 

𝑓(𝑥) =

{
 
 

 
 
1

2
+ 2𝑥 𝑖𝑓 0 ≤ 𝑥 ≤

1

4
3

2
− 2𝑥 𝑖𝑓

1

4
≤   𝑥 ≤

1

2

1 − 𝑥 𝑖𝑓
1

2
≤ 𝑥 ≤ 1

  

 

Lemma 2.21.  Let 𝑓: [0,1] → [0,1] be defined as in Example 2.20, then 𝑓  is topologically 

transitive but not totally transitive neither weakly blending. 

 

Proof. Banks in 1997showed that 𝑓 is topologically transitive. To prove that 𝑓 is not totally 

transitive, let 𝑈 = (0,
1

2
), and 𝑉 = (

1

2
, 1). Then 𝑓(𝑈) = 𝑓 ((0,

1

2
)) = (

1

2
, 1) = 𝑉 and 𝑓(𝑉) =

𝑓 ((
1

2
, 1)) = (0,

1

2
) = 𝑈.  i.e., 𝑈 and 𝑉 are are invariant under  𝑓2. So 𝑓2 is not topologically 

transitive on [0,1]. Therefore 𝑓 is not totally transitive.  Finally, 𝑓 is not weakly blending, for 

that, let 𝑈 = (0,
1

2
), and 𝑉 = (

1

2
, 1), and let 𝑛 > 0 be an integer. If 𝑛  is odd, then 𝑓𝑛(𝑈) = 𝑉,

𝑓𝑛(𝑉) = 𝑈, and if 𝑛 is even, then𝑓𝑛(𝑈) = 𝑈, 𝑓𝑛(𝑉) = 𝑉. Hence, for any case of 𝑛 we have  

𝑓𝑛(𝑈) ∩ 𝑓𝑛(𝑉) = ∅. Therefore, 𝑓 is not weakly blending.     

 

Theorem 2.22.  𝐷𝑒𝑣𝐶 does not imply totally transitive, topologically mixing, 𝑙. 𝑒. 𝑜, weakly 

blending neither the 𝑆𝑝. 
 

Proof. Let us consider  𝑓: [0,1] → [0,1] as defined in Example 2.20. By Lemma 2.21,  𝑓 is 

topologically transitive but not totally transitive neither weakly blending. Since 𝑓 is a transitive 

interval map, then it is 𝐷𝑒𝑣𝐶 because transitivity is equivalent to 𝐷𝑒𝑣𝐶 on interval (Bowen 

1971). Also, since 𝑓 is not totally transitive, then it is not 𝑙. 𝑒. 𝑜 neither topologically mixing 

since 𝑙. 𝑒. 𝑜 and topologically mixing are stronger than totally transitive.  Finally, since 𝑓 is not 

topologically mixing, then it does not have the 𝑆𝑝 since the 𝑆𝑝 is stronger than topologically 

mixing (Alsedà et al. 2003). Therefore, 𝐷𝑒𝑣𝐶  does not imply totally transitive, topologically 

mixing, 𝑙. 𝑒. 𝑜, weakly blending neither the 𝑆𝑝.  

 

Lemma 2.23.  Let 𝑋  be a compact metric space without isolated points. If 𝑓: 𝑋 →  𝑋 is a 

continuous 𝐷𝑒𝑣𝐶 function, then it has 𝑃𝑛 dense for all 𝑛 (Dzul-Kifli & Good 2015) . 

 
Lemma 2.24.  If a dynamical system (𝑋, 𝑓) is 𝑆𝐷𝐼𝐶, then it has no isolated points. 

 

Proof.  Let 𝑋 has 𝑆𝐷𝐼𝐶. Suppose 𝑥 ∈ 𝑋 is an isolated point, i.e. the singleton 𝑈 = {𝑥} is open 

in 𝑋, then there is no two distinct points 𝑦, 𝑧 ∈ 𝑈 such that for 𝑛 > 0, 𝑑(𝑓𝑛(𝑦), (𝑓𝑛(𝑧)) > 𝑐, 
for some 𝑐 > 0, which is a contradiction since 𝑋 is  𝑆𝐷𝐼𝐶. Therefore 𝑋 has no isolated point. 

 

Theorem 2.25.  𝐷𝑒𝑣𝐶 implies 𝑃𝑛 is dense for all 𝑛. 

 

Proof.  Let (𝑋, 𝑓) be a 𝐷𝑒𝑣𝐶 dynamical system. Then it is 𝑆𝐷𝐼𝐶, and hence has no isolated 

points, by Lemma 2.24. Hence (𝑋, 𝑓) by Lemma 2.23, has 𝑃𝑛  is dense for all 𝑛. Therefore 

𝐷𝑒𝑣𝐶 implies 𝑃𝑛 is dense for all 𝑛.  



 

On the Relation of Seven Chaos Characterizations 

  
  

143 

 

We move to the next chaos property, the topologically mixing. 

Theorem 2.26.  Topologically mixing implies totally transitive but does not imply 𝐷𝑒𝑣𝐶 nor 𝑃𝑛 

is dense for all 𝑛 (Baloush & Dzul-Kifli 2017). 

 

Lemma 2.27.  For any continuous map 𝑓,  it is weakly mixing iff for any non-empty open sets 

𝑈and 𝑉 there is a 𝑘 ≥ 1 such that 𝑓𝑘(𝑈) ∩ 𝑉 ≠ 𝜙 and 𝑓𝑘(𝑉) ∩ 𝑉 ≠ 𝜙 (Banks 2005). 

 

Theorem 2.28  Topologically mixing implies weakly blending. 

 

Proof.  Let 𝑈 and 𝑉 be any two nonempty open sets in 𝑋. Since topologically mixing implies 

weakly mixing, then by Lemma 2.27 we have, 

 

𝑓𝑘(𝑈) ∩ 𝑉 ≠ ∅ and 𝑓𝑘(𝑉) ∩ 𝑉 ≠ 𝜙, for some 𝑘 ≥ 1. 
 

Now 

 

(𝑓𝑘(𝑈) ∩ 𝑉) ∩ (𝑓𝑘(𝑉) ∩ 𝑉) = (𝑓𝑘(𝑈) ∩ 𝑓𝑘(𝑉)) ∩ 𝑉.  
 

We have two cases, as follows; 

• Case 1: (𝑓𝑘(𝑈) ∩ 𝑓𝑘(𝑉)) ∩ 𝑉 ≠ ∅. Since 𝑉 ≠ ∅, then 𝑓𝑘(𝑈) ∩ 𝑓𝑘(𝑉) ≠ ∅ and we are 

done. 

• Case 2: (𝑓𝑘(𝑈) ∩ 𝑓𝑘(𝑉)) ∩ 𝑉 = ∅. Since 𝑉 is a nonempty open set, then for all 𝑥 ∈ 𝑉, 
𝑥 ∉ 𝑓𝑘(𝑈) ∩ 𝑓𝑘(𝑉). Hence, for all 𝑥 ∈ 𝑉, 𝑥 ∉ 𝑓𝑘(𝑈) or 𝑥 ∉ 𝑓𝑘(𝑉), which implies that 

 

  𝑓𝑘(𝑈) ∩ 𝑉 = ∅ or 𝑓𝑘(𝑉) ∩ 𝑉 = ∅, 

  

which is a contradiction since 𝑓 is weakly mixing. Hence 𝑓 is weakly blending.  

 

Lemma 2.29.  Let 𝑓: 𝐼 → 𝐼 be a 𝜆-expanding interval map with 𝜆 > 𝑁, where 𝑁 is a positive 

integer. Then, for every nondegenerate sub-interval 𝐽, there exists an integer 𝑛 ≥ 0 such that 

𝑓𝑛(𝐽) contains at least 𝑁 distinct critical points (Ruette 2016). 

 

Lemma 2.30.  Let 𝑓: [𝑎, 𝑏] → [𝑎, 𝑏] be a topologically mixing interval map. Then 𝑓 is 𝑙. 𝑒. 𝑜 if 

and only if both 𝑎 and 𝑏 are accessible (Hasselblatt & Katok 2003). 

 

Example 2.31.  (Ruette 2016) Let (𝑎𝑛)𝑛∈ℤ be a sequence of points in (0,1) such that 𝑎𝑛 <
𝑎𝑛+1 for all 𝑛 ∈ ℤ, and 

 

𝑙𝑖𝑚
𝑛→−∞

𝑎𝑛 = 0 and  𝑙𝑖𝑚
𝑛→+∞

𝑎𝑛 = 1. 

 

For all 𝑛 ∈ ℤ, we let 𝐼𝑛 = [𝑎𝑛, 𝑎𝑛+1] and 𝑓𝑛: 𝐼𝑛 → 𝐼𝑛−1 ∪ 𝐼𝑛 ∪ 𝐼𝑛+1 is given by 𝑓𝑛(𝑎𝑛) = 𝑎𝑛, 

𝑓𝑛(𝑎𝑛+1) = 𝑎𝑛+1,𝑓𝑛 (
2𝑎𝑛+𝑎𝑛+1

3
) = 𝑎𝑛+2,  𝑓𝑛 (

𝑎𝑛+2𝑎𝑛+1

3
) = 𝑎𝑛−1.  

 

Then we define the map 𝑓: [0,1] → [0,1] by 𝑓(0) = 0, 𝑓(1) = 1 and for all integer 𝑛, for all 

𝑥 ∈ 𝐼𝑛, 𝑓(𝑥) = 𝑓𝑛(𝑥). 
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Lemma 2.32.  Let 𝑓: [𝑎, 𝑏] → [𝑎, 𝑏] be defined as in Example 2.31. Then 𝑓 is topologically 

mixing but not 𝑙. 𝑒. 𝑜. 

 

Proof.  It is obvious that the end points 0 and 1 are not accessible because for any 𝑛 ≥ 1 and 

any 𝑥 ∈ (0,1), 𝑓𝑛(𝑥) ≠  0 and similar for the end point 1. Hence, 𝑓 is not 𝑙. 𝑒. 𝑜 by Lemma 

2.30. Now we will show that 𝑓 is topologically mixing (Bowen 1971), let 𝐽 be a non-degenerate 

subinterval of [0,1]. Since 𝑓 sends the middle third of 𝐼𝑛 (specifically (
2𝑎𝑛+𝑎𝑛+1 

3
,
𝑎𝑛+2𝑎𝑛+1

3
)) 

into an adjacent interval, the map 𝑓 stretches the interval in such a way that the length of the 

image under 𝑓 is three times larger than the original interval, then 𝑓 is 3 −expanding (Ruette 

2016). Hence, by Lemma 2.29, there exists 𝑛 ≥ 0 such that 𝑓𝑛(𝐽) contains two distinct critical 

points. This implies that 𝑓𝑛+1(𝐽) contains 𝐼𝑘  for some 𝑘 ∈ ℤ. Now for all 𝑘 ∈ ℤ and for all 

𝑚 ≥ 0, we have 

 

[𝑎𝑘−𝑚, 𝑎𝑘+𝑚+1] ⊂  𝑓
𝑚(𝐼𝑘).  

 
Since, for a given 𝑘 ∈ ℤ, the lengths of [0, 𝑎𝑘−𝑚] and [𝑎𝑘+𝑚+1, 1] → 0 when 𝑚 → ∞, then for 

all 𝜖 >  0, there exists 𝑀 such that 𝐿 = [𝜖, 1 − 𝜖] ⊂  𝑓𝑚(𝐽),  for all 𝑚 ≥ 𝑀. Hence, 𝑓𝑚(𝐽) ∩
 𝐿 ≠ ∅, for all 𝑚 ≥ 𝑀. Therefore 𝑓 is topologically mixing.  

 

Theorem 2.33.  Topologically mixing does not imply 𝑙. 𝑒. 𝑜. 

 

Proof.  Consider 𝑓: [𝑎, 𝑏] → [𝑎, 𝑏]   as defined in Example 2.31. By Lemma 2.32, 𝑓  is 

topologically mixing but not 𝑙. 𝑒. 𝑜. Therefore, topologically mixing does not imply 𝑙. 𝑒. 𝑜.  

 

Theorem 2.34.  Topologically mixing does not imply the 𝑆𝑝. 
 

Proof.  In Theorem 2.5 we proved that the map 𝑓𝑛
𝑛 where 𝑓𝑛 is as defined in Example 2.3 is 

𝑙. 𝑒. 𝑜 and does not have the 𝑆𝑝. Since by Theorem 2.1, every 𝑙. 𝑒. 𝑜 is topologically mixing, 

then 𝑓𝑛
𝑛  is a topologically mixing but does not have the 𝑆𝑝.  Therefore, on compact space 

topologically mixing does not imply the 𝑆𝑝.  

 

Theorem 2.34.  The 𝑆𝑝 implies topologically mixing, and then totally transitive (Alsedà et al.  

2003). 

 

Theorem 2.35.  The 𝑆𝑝 implies weakly blending. 

 

Proof.  By Theorem 2.35, the 𝑆𝑝 implies topologically mixing, and since every topologically 

mixing map by Theorem 2.28 is weakly blending, the proof is complete.  

 

Theorem 2.36.  If (𝑋, 𝑓)  satisfies the 𝑆𝑝 , then 𝑓  has dense periodic points and 𝑓  is 

topologically mixing (Denker et al. 1976). 

 

Lemma 2.37.  A topologically mixing map (on a space with more than one point) has 𝑆𝐷𝐼𝐶 

(Hasselblatt & Katok 2003). 

 

Lemma 2.38.  Let 𝑋  be a compact metric space without isolated points. If 𝑓: 𝑋 →  𝑋 is a 

continuous 𝐷𝑒𝑣𝐶 function, then it has 𝑃𝑛 is dense for all 𝑛 (Dzul-Kifli & Good 2015). 
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Theorem 2.39.  The 𝑆𝑝 implies 𝑃𝑛 is dense for all 𝑛. 
 

Proof.  Since 𝑓: 𝑋 →  𝑋 has the 𝑆𝑝, then 𝑓 is transitive, topologically mixing and has dense 

periodic points by Lemma 2.37. Also, since 𝑓  is topologically mixing then it is 𝑆𝐷𝐼𝐶  by 

Lemma 2.38, and hence the space 𝑋 has no isolated points by Lemma 2.24.  So, the dynamical 

system (𝑋, 𝑓) is a 𝐷𝑒𝑣𝐶 compact metric space without isolated points. Hence by Theorem 2.39 

the system (𝑋, 𝑓) has 𝑃𝑛 is dense for all 𝑛. Therefore, the 𝑆𝑝 implies 𝑃𝑛 is dense for all 𝑛.  

 

Theorem 2.40.  The 𝑆𝑝 implies 𝐷𝑒𝑣𝐶. 

 

Proof.  By Lemma 2.37, the 𝑆𝑝 implies topologically mixing and dense periodic points. Now 

every topologically mixing map is topologically transitive and by Lemma 2.38, topologically 

mixing implies 𝑆𝐷𝐼𝐶. Therefore, the 𝑆𝑝 implies 𝐷𝑒𝑣𝐶.  

 

Lemma 2.41.  A topologically mixing interval map 𝑓: 𝐼 →  𝐼 has the 𝑆𝑝 (Ruette 2016). 

 

Theorem 2.42.  The 𝑆𝑝 does not imply 𝑙. 𝑒. 𝑜. 
 

Proof.  Consider the interval map 𝑓 ∶  [0, 1] → [0, 1] as in Example 2.31. By Lemma 2.32, 𝑓 is 

a topologically mixing interval map but not 𝑙. 𝑒. 𝑜. Since 𝑓 is topologically mixing interval map, 

then by Lemma 2.41 it has the 𝑆𝑝. Hence, 𝑓 satisfied the 𝑆𝑝 but is not 𝑙. 𝑒. 𝑜. Therefore, the 𝑆𝑝  

does not imply 𝑙. 𝑒. 𝑜.        

  

3.  Implication Relation between Chaos Characterizations on Shift of finite type 

In this part, we look at a more specific space, the shift space. There are two types of shift space, 

i.e., shift of finite type (SFT) and shift of infinite type (SIFT), which are dependent on the 

number of forbidden blocks used to define the space. On SFT, we found that the hierarchy of 

the seven chaos characterizations consists of only two levels, as presented in Figure 2. There 

are five equivalent chaos characterizations located in the top level of the hierarchy. In the shift 

of infinite type, the equivalences are not true, and some counterexamples are provided in the 

following section. 

A shift space 𝑋  is a collection of all sequences over 𝑛  symbols in alphabet set 𝒜 =
{1,2,⋯ , 𝑛 − 1} such that there are some blocks that are not allowed to appear in the sequences. 

Therefore,  𝑋 ⊆ 𝒜ℕ. Whenever the set of forbidden blocks is empty, the space is called full-𝑛-

shift, Σ𝑛. If the number of forbidden blocks is finite, then it is called SFT, and vice versa. The 

shift map 𝜎 is a map that shifting a sequence in 𝑋 to the left, i.e 𝜎(𝑠0𝑠1𝑠2⋯) = 𝑠1𝑠2⋯ for 

𝑠0𝑠1𝑠2⋯ ∈ 𝑋. The space is a metric space which is equipped with metric 

 

𝑑(s, t) = {
0 𝑖𝑓 𝑠 = 𝑡

2−𝑗 𝑖𝑓 𝑠 ≠ 𝑡
  

 

where 𝑗 ∈ ℕ is the smallest number such that 𝑠𝑗 ≠ 𝑡𝑗.  Therefore, the topology on any shift 

space 𝑋 is the topology induced by the metric 𝑑 . Note that for any open ball 𝑈 in shift space 𝑋  

there exists an allowed block 𝑤 in 𝑋 of length 𝑙 such that 𝑈 = {t ∈  𝑋: 𝑡0𝑡1, … , 𝑡𝑙−1 = 𝑤}. We 

denote 𝑈 as 𝑈𝑤 to indicate that 𝑈 is generated by the block 𝑤. The shift map 𝜎 is continuous 

on this topological space. 
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Figure 2: Hierarchy of chaos characterizations based on their ability to imply others on SFT 

To show the equivalence of five chaos characterizations on a shift of finite type, let us 

recall some implications found earlier, as follows: 

 

Proposition 3.1.  On SFT, totally transitive implies topologically mixing and 𝑙. 𝑒. 𝑜 (Crannell 

1998). 

 

Proposition 3.2.  On SFT, topologically mixing implies the 𝑆𝑝 (Denker et al. 1976). 

 

Proposition 3.3.  On SFT, transitive implies Devaney chaos (Dzul-Kifli 2011). 

 

Theorem 3.4 On SFT, the following chaos properties are equivalent: 

(1)  Totally transitive 

(2)  Topologically mixing 

(3)  𝑆𝑝. 

(4)  𝑙. 𝑒. 𝑜. 
(5)  𝐷𝑒𝑣𝐶. 

 

Proof.  By Proposition 3.1, totally transitive implies topologically mixing, and by Proposition 

3.2, topologically mixing implies the specification property. By Theorem 2.26 and Theorem 

2.35, specification property implies totally transitive on compact metric spaces. By Proposition 

3.1, totally transitive implies 𝑙. 𝑒. 𝑜 on SFT. Therefore, specification property implies 𝑙. 𝑒. 𝑜 on 

SFT. On compact metric space, 𝑙. 𝑒. 𝑜 implies totally transitive by Theorem 2.1, so does on SFT. 

To show that 𝐷𝑒𝑣𝐶 implies  𝑙. 𝑒. 𝑜, let 𝑋 ⊆ Σ𝑘   be Devaney chaotic shift of finite type and we 

aim to show that 𝑋 is 𝑙. 𝑒. 𝑜. For this we use the induction method on 𝑘. Let us assume that it is 

true for Σ𝑘, we need to show that a Devaney chaotic SFT  𝑌 ⊂ Σ𝑘+1 is 𝑙. 𝑒. 𝑜 . Let  

 

𝒜 = {0,1,⋯ , 𝑘}, and 𝒜′ = {0,1,⋯ , 𝑘 − 1}  
 

 We define 𝑌′ ⊂ Σ𝑘 as a shift space over the alphabet 𝒜′, where 
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𝑌′ = {𝐱′ = (𝑥′
𝑖
)𝑖∈ℕ: 𝑥

′
𝑖 ∈ 𝒜

′for all 𝑖 ∈ ℕ | ∃𝐱 ∈ 𝑌: 𝑖𝑓 𝑥𝑖 = 𝑘, then 𝑥𝑗
′ = 0 and    

𝑖𝑓 𝑥𝑖 ≠ 𝑘, then 𝑥𝑗
′ = 𝑥𝑖} 

 

Therefore, for every block 𝑤′ in 𝑌′, there exists a block 𝑤 in 𝑌 such that we get 𝑤′ by replacing 

𝑘′𝑠 in 𝑊 with 0′. We claim that 𝑌′ is a Devaney chaotic shift of finite type over 𝑘 alphabets. 𝑌′ 
is a subshift of finite type since every forbidden block ℱ′ in 𝑌′ is also a forbidden block ℱ in 𝑌, 

that means ℱ′ ⊆ ℱ and therefore 𝑌′ has a finite number of forbidden blocks.  

 

To show that 𝑌′ is Devaney chaotic, let 𝑢′, 𝑣′ be two allowed blocks in 𝑌′,  and let 𝑢, 𝑣 be 

allowed blocks in 𝑌 with respect to 𝑢′ and 𝑣′, respectively. Now we must show that for every 

𝑢′, 𝑣′  in 𝑌′  there exists a block 𝑤′ in 𝑌′such that 𝑢′𝑤′𝑣′ ∈ 𝑌′. Since  𝑌 is transitive then for 

every two allowed blocks 𝑢, 𝑣  in 𝑌   there exists a block 𝑤  in 𝑌  such that 𝑢 𝑤 𝑣 ∈  𝑌.  By 

replacing 𝑢, 𝑣, 𝑤  with 𝑢′, 𝑣′ and 𝑤′, respectively, then we have  𝑢′𝑤′𝑣′ ∈ 𝑌′. Hence,  𝑌′ is 

transitive. Therefore, by Proposition 3.3 𝑌′ is Devaney chaotic and then by our assumption, 𝑌′ 
has 𝑙. 𝑒. 𝑜. Let 𝑈′ be a nonempty open set in 𝑌′, where 𝑈′ is generated by 𝑤′, and let 𝑤 be an 

allowed block in 𝑌 with respect to 𝑤′, and 𝑈 is a nonempty open set in 𝑌 generated by 𝑤, i.e., 

𝑈 = 𝑌𝑤 . 
 

Now we will show that 𝑌 is 𝑙. 𝑒. 𝑜, i.e., there exists a positive integer 𝑛 such that 𝜎𝑛(𝑈) = 𝑌 , 
i.e. 

 

∀𝑦 ∈ 𝑌, ∃𝑢 ∈ 𝑈 such that 𝜎𝑛(𝑢) = 𝑦.  
 

Let 𝑦 ∈ 𝑌, then by the definition of 𝑌′we get 𝑦′ by replacing 𝑘′𝑠 in 𝑦 by 0′𝑠. Since  𝑌′ is 𝑙. 𝑒. 𝑜 

then there exists a positive integer 𝑛  such that 𝜎𝑛(𝑈′) = 𝑌′, i.e.,  

 

∀𝑦′ ∈ 𝑌′, ∃𝑢′ ∈ 𝑈′ such that 𝜎𝑛(𝑢′) = 𝑦′ . 
 

Let 𝑢 be an allowed block in 𝑌 such that we produce 𝑢′  by replacing 𝑘′𝑠 in 𝑈 with 0′𝑠, then 

| 𝑢| = |𝑢′|. Also, let 𝑦 ∈ 𝑌 such that we produce 𝑦′ by replacing 𝑘′𝑠 in 𝑦 with 0′𝑠. Then  𝑢 ∈
𝑈  and𝑦 ∈ 𝑌  and  𝜎𝑛(𝑢) = 𝑦 . Therefore, 𝜎𝑛(𝑌) = 𝑈 , and hence 𝑌  is 𝑙. 𝑒. 𝑜 .  Finally, by 

Theorem 3.4,  𝑙. 𝑒. 𝑜 implies specification property and by Theorem 2.41, on compact metric 

space, specification property implies Devaney chaos, so does on SFT.   

 

However, the strong dense periodicity property is weaker than these five chaos 

characterizations. 

 

Theorem 3.5.  On SFT  𝑙. 𝑒. 𝑜 implies 𝑃𝑛 dense for all 𝑛 (Baloush & Dzul-Kifli 2018). 

 

The converse of the above theorem is not true by the following counterexample. 

 

Example 3.6.  Let A = {1, 2, 3, 4} be an alphabet. Let X = Xℱ  be a SFT over A with a set of 

forbidden blocks ℱ = {11, 13, 14, 23, 24, 31, 32, 33, 41, 42}. 
 

Lemma 3.7.  Let 𝑋 = 𝑋ℱ  be a SFT as defined in Example 3.6. Then 𝑋 has the 𝑃𝑛 dense for all 

𝑛 but is not transitive neither weakly blending. 
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Proof.  Let 𝑛 ∈ ℕ and 𝑋𝑢 be an open set in Xℱ. Let Xℱ1 be a SFT with ℱ1 = {11} and ∀ 𝐱 ∈

Xℱ1 , 𝑥𝑖 ≠  3,4 for every 𝑖 ∈ ℕ. Also let Xℱ2be a SFT with  ℱ2 = {33} and ∀ 𝐱 ∈ Xℱ2 , 𝑥𝑖 ≠

1,2 for every 𝑖 ∈ ℕ. Then 

 

 Xℱ = Xℱ1 ∪ Xℱ2. 

 

Since ℱ1 = {11} and 11 is the only forbidden block in Xℱ1, then Xℱ1 is topologically conjugate 

to the golden mean shift 𝑋𝐺𝑀𝑆 (Xℱ1 ≅ 𝑋𝐺𝑀𝑆) which has 𝑃𝑛 dense for all 𝑛. Similarly, since 

ℱ2 = {33} and 33 is the only forbidden block in Xℱ2, then Xℱ2 is conjugate to the golden mean 

shift 𝑋𝐺𝑀𝑆 (Xℱ2 ≅ 𝑋𝐺𝑀𝑆). Now for the open set 𝑋𝑢 we have either  𝑋𝑢 ⊆ Xℱ1  or 𝑋𝑢 ⊆ Xℱ2 . 

Hence, in both cases, for every open set 𝑋𝑢 and for every  𝑛 ∈ ℕ there exists a periodic point 𝐱 

of prime period 𝑘 for some 𝑘 ≥ 𝑛 such that x ∈ 𝑋𝑢. Therefore, Xℱ has the property of 𝑃𝑛 dense 

for all 𝑛. 
 

To show that 𝑋 is not transitive, let us consider the blocks 𝑢 = 1 and 𝑣 = 3. Then 𝑢, 𝑣 are two 

allowed blocks in 𝑋  but there is no allowable block 𝑤  in 𝑋 such that 𝑢𝑤𝑣  is allowed. 

Therefore, 𝑋 is not transitive. Finally, 𝑋 is not weakly blending, for that, let 𝑈 = 𝑋12 and 𝑉 =
𝑋43 be two open sets in 𝑋. Then for every 𝑛 ∈ ℕ we have  𝑓𝑛(𝑈) ∩ 𝑓𝑛(𝑉) = ∅. Therefore, X 

is not weakly blending.  

 

Theorem 3.8.  On SFT, the property of 𝑃𝑛  dense for all 𝑛 does not imply 𝑙. 𝑒. 𝑜 neither weakly 

blending. 
 

Proof.  Consider the shift of finite type 𝑋 as defined in Example 3.6.  By Lemma 3.7, 𝑋 has 𝑃𝑛  

dense for all 𝑛 but is not transitive neither weakly blending. Since 𝑋 is not transitive then it is 

not  𝑙. 𝑒. 𝑜, since transitivity is weaker than  𝑙. 𝑒. 𝑜. Therefore, on SFT, the property of 𝑃𝑛 dense 

for all 𝑛 does not imply 𝑙. 𝑒. 𝑜 neither weakly blending.  

 

Weakly blending is also weaker than those five chaos characterizations. 

 

Theorem 3.9.  On SFT, 𝑙. 𝑒. 𝑜 implies weakly blending. 

 

Proof.  By Theorem 2.2, 𝑙. 𝑒. 𝑜 implies weakly blending.  

 

The following counterexample shows that the converse Theorem 3.9 is not true. 

 

Example 3.10.  Let X = Xℱ = {0111̅̅ ̅̅ ̅, 111̅̅ ̅̅ ̅}  be a shift space with forbidden blocks  ℱ =
{00, 10}. 
 

Lemma 3.11.  The shift space 𝑋 as defined in Example 3.10 is weakly blending but neither 

transitive nor has dense periodic points. 

 

Proof.  Since 𝑋 = {0111̅̅ ̅̅ ̅, 111̅̅ ̅̅ ̅}, then the only open sets are the 𝑋,𝜙, 111̅̅ ̅̅ ̅ and 0111̅̅ ̅̅ ̅. Since 

0111̅̅ ̅̅ ̅ ∉ 𝜎𝑛(111̅̅ ̅̅ ̅) for all integer 𝑛, then 𝑋 is not transitive. However, since,  

 

𝜎𝑛(111̅̅ ̅̅ ̅) ∩ 𝜎𝑛(0111̅̅ ̅̅ ̅) = {111̅̅ ̅̅ ̅}  
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Then, 𝑋 is strongly blending, and then weakly blending.  The periodic points are not dense since  

{0111̅̅ ̅̅ ̅} does not have any periodic point.  

 

Theorem 3.12.  On SFT, weakly blending does not imply  𝑙. 𝑒. 𝑜 neither 𝑃𝑛  dense for all 𝑛. 
 

Proof.  Let us consider the SFT  𝑋 as defined in Example 3.10. By Lemma 3.11, we showed 

that 𝑋 is weakly blending, but neither transitive nor has dense periodic points. Therefore, 𝑋 

does not have the property of  𝑃𝑛  dense for all 𝑛  neither  𝑙. 𝑒. 𝑜,  since transitivity is weaker 

than  𝑙. 𝑒. 𝑜. Hence, on shift of finite type, weakly blending does not imply 𝑙. 𝑒. 𝑜 neither 𝑃𝑛  

dense for all 𝑛.  

 

4. Implication Relation between Chaos Characterizations on Shift of Infinite Type 

In this section, we present two examples of shift of infinite type (SIFT) to show that the 

equivalence of five chaos properties (i.e., totally transitive, topologically mixing, specification 

property, 𝑙. 𝑒. 𝑜, and Devaney chaos is not true for SIFT. 

 

Example 4.1.  The increasing gap shift Σ(I) is an S −gap shift with 

 

𝑆 = 𝐼 = {𝑎𝑛: 𝑎0 = 1, 𝑎𝑛 = 𝑎𝑛−1 + 𝑛, ∀𝑛 ∈  ℕ} ⊂ ℕ  

 

So, Σ(𝐼) is defined to be the set of all binary sequences for which 1’s occurs infinitely often and 

the number of 0’s between successive occurrences of 1 is an integer in 𝐼 . Since Σ(𝐼)  has 

infinitely many forbidden blocks, so it is a shift of infinite type.  

 

Lemma 4.2.  The increasing gap shift,  𝛴(𝐼) is totally transitive, topologically mixing, Devaney 

chaotic but does not have the specification property nor 𝑙. 𝑒. 𝑜 (Kamarudin et al. 2019). 

 

Example 4.3.  The shift space Σ∗ is defined by; 

 

Σ∗ = {(𝑥0 , 𝑥1, … ) ∈ Σ∗: 𝑥𝑖 = 0, 𝑥𝑗 = 2 ⇒ |𝑖 − 𝑗| ≠ 2
𝑝 ∀𝑝 = 0,1,… }.  

 

So Σ∗ is the set of all infinite sequences of 0's, 1's and 2's for which no 0 and 2 are separated by 

a distance of 2𝑝 for any number 𝑝. It is clear that Σ∗ is shift of infinite type. 

 

Lemma 4.4.  The 𝛴∗ is totally transitive, but not topologically mixing, 𝑙. 𝑒. 𝑜, neither has the 

𝑆𝑝 (Crannell 1998).  

 

Theorem 4.5.  On SIFT, totally transitive is not equivalent to topologically mixing, 

specification property and 𝑙. 𝑒. 𝑜. 

 

Proof.  Let us consider Σ∗ as defined in Example 4.3. By Lemma 4.4, Σ∗ is totally transitive but 

not topologically mixing, 𝑙. 𝑒. 𝑜 neither has the specification property.  

 

Theorem 4.6.  On SIFT, topologically mixing is not equivalence to totally transitive. 
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Proof.  Let us consider Σ∗ as defined in Example 4.3. By Lemma 4.4, Σ∗is totally transitive but 

not topologically mixing.  

 

Theorem 4.7.  On SIFT, the specification property is not equivalence to totally transitive. 

 

Proof.  Let us consider Σ(𝐼)  as defined in Example 4.1. By Lemma 4.2, Σ(𝐼) is totally transitive 

but does not have the specification property.  

 

Theorem 4.8.  On SIFT, 𝑙. 𝑒. 𝑜 is not equivalence to totally transitive, topologically mixing, and 

Devaney chaos. 

  

Proof.  Let us consider the increasing gap shift Σ(𝐼) as defined in Example 4.1. By Lemma 4.2, 

Σ(𝐼) is totally transitive, topologically mixing, and Devaney chaotic, but not 𝑙. 𝑒. 𝑜.  

 

Theorem 4.9.  On SIFT, Devaney chaotic is not equivalent to 𝑙. 𝑒. 𝑜. 

 

Proof.  Let us consider the increasing gap shift Σ(𝐼) as defined in Example 4.1. By Lemma 4.2, 

Σ(𝐼) is Devaney chaotic but not 𝑙. 𝑒. 𝑜.  

 

5. Conclusion  

Hierarchy diagrams in Figures 1 and 2 completely summarize all implication relations between 

seven chaos characterizations on general compact space and SFT, respectively. From other 

perspective, they give the order of the seven chaos characterizations according to the ability to 

implies other chaos characterizations. Existing results in various previous studies contributed 

to the process. To complete the process, we have proved some theorems and provided some 

counterexamples to verify other remaining implication relations. A surprising finding in this 

work is the differences of implication relations on SFT and SIFT. 
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