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ABSTRACT  

Hand, foot, and mouth disease (HFMD) outbreaks in Asia have increased since the late 1990s, 

causing severe and often fatal consequences. Several statistical approaches, such as 

Generalized Linear Models (GLM) and Generalized Additive Models (GAM), have been used 

in numerous studies to examine the association between climate factors and HFMD cases. 

However, the results vary by country. In Malaysia, these issues require further research, as 

there are only a few studies employing GLM and GAM approaches that focus on HFMD cases 

and climate factors, particularly in the East Coast region. Therefore, this study explores the 

association between HFMD and climate factors on Malaysia's East Coast using GLM and 

GAM with Negative Binomial to identify the best model for interpreting HFMD cases. The 

findings show that climate factors affect HFMD differently across states in East Coast 

Malaysia. The results show that the GAM Negative Binomial model best represents these 

issues. The temperatures between 26°C and 28°C will decrease the risk of HFMD cases in 

Pahang over the next two weeks. Besides, temperatures ranging from 25 to 27°C and 28.5 to 

30°C significantly increased HFMD risk in Terengganu over the next two weeks. 

Nevertheless, Kelantan found no correlation between climate and HFMD. These findings can 

help local health authorities in developing a climate-based early warning system to minimize 

HFMD outbreaks in Malaysia's East Coast Region. 
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ABSTRAK  

Penyakit tangan, kaki, dan mulut (HFMD) telah meningkat di negara Asia sejak akhir 1990-

an, membawa kepada kesan negatif dan sering kali membawa maut. Beberapa pendekatan 

statistik, seperti Model Linear Teritlak (GLM) dan Model Tambahan Teritlak (GAM), telah 

digunakan dalam banyak kajian untuk mengkaji hubungan antara faktor iklim dan kes HFMD. 

Namun, hasil setiap kajian berbeza mengikut negara. Di Malaysia, isu ini memerlukan 

penyelidikan lanjut kerana hanya ada beberapa kajian yang menggunakan pendekatan GLM 

dan GAM untuk kes HFMD dan faktor iklim, terutama di Pantai Timur. Pendekatan GLM dan 

GAM Binomial Negatif digunakan untuk menentukan model terbaik bagi mewakili kes 

HFMD dan faktor iklim di Pantai Timur. Hasil kajian ini menunjukkan bahawa faktor iklim 

mempengaruhi kes penyakit HFMD secara berbeza mengikut negeri di Pantai Timur Malaysia. 

Kajian ini menunjukkan bahawa model GAM Binomial Negatif adalah yang terbaik untuk 

mentafsir isu ini. Suhu antara 26°C dan 28°C akan mengurangkan risiko kes HFMD di Pahang 

dalam tempoh dua minggu akan datang. Selain itu, suhu antara 25 hingga 27°C dan 28.5 

hingga 30°C secara signifikan meningkatkan risiko kes HFMD di Terengganu dalam tempoh 

dua minggu akan datang. Manakala, tiada korelasi ditemui antara iklim dan kes penyakit 

HFMD di Kelantan. Hasil ini dapat membantu pihak berkuasa kesihatan tempatan 

membangunkan sistem amaran awal penyakit berasaskan perubahan iklim untuk 

mengurangkan wabak HFMD di Pantai Timur Malaysia. 
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1. Introduction 

Hand, foot, and mouth disease (HFMD) is a common viral illness that rapidly spreads 

worldwide. In early 1957, Seddon made the first clinical diagnosis of HFMD in New Zealand 

(Flewett et al. 1963). The disease was named by Thomas Henry Flewett after a previous 

outbreak of HFMD in 1960 (Alsop et al. 1960). HFMD is caused by enteroviruses, the most 

common of which are Coxsackie virus A16 and Enterovirus 71. Between late June and July 

1957, a total of 60 cases of HFMD caused by Coxsackievirus A16 were identified in Toronto, 

Canada (Robinson et al. 1958). The other HFMD virus, Enterovirus 71 (EV71), was found in 

1969 in California (Schmidt et al. 1974). EV71 has been linked to sporadic outbreaks of 

HFMD as well as severe neurological conditions, including meningitis, encephalitis, and 

acute flaccid paralysis (AFP) (Chen et al. 2007). 

This disease primarily affects children under the age of five, but it can also affect 

adolescents (Melnick 1984). Transmission of viruses occurs through saliva, blister fluid, and 

patient feces. The infection exhibits mild symptoms, initially showing as a rise in body 

temperature and the formation of blisters on the hands, feet, mouth, and tongue (Ministry of 

Health Malaysia 2012). The first sign of these symptoms will occur within a period of three to 

seven days following the infection. Initially, an individual may encounter a mild fever, poor 

appetite, swollen throat, and a general feeling of discomfort, commonly referred to as malaise 

(US Centers for Disease Control and Prevention 2021). HFMD caused by EV71 can result in 

severe neurological complications compared to other enterovirus serotypes, such as brainstem 

encephalitis and acute flaccid paralysis (Ooi et al. 2010; Wang & Liu, 2009). The majority of 

patients with neurological complications from EV71 infection are children, particularly those 

under the age of five (Chen et al. 2007; Wang et al. 1999). 

The outbreak of HFMD in various countries, including China, Japan, Hong Kong, the 

Republic of Korea, Singapore, Thailand, Taiwan, Vietnam, the United States of America, 

Europe, Brazil, and Malaysia, has showed a significant challenge to global public health. A 

growing incidence of HFMD outbreaks in Asian countries has been observed in the past 

decade. These outbreaks have predominantly impacted children and have caused severe 

complications that have estimated thousands of fatalities (Xing et al. 2014). A significant 

HFMD outbreak in Malaysia triggered a series of outbreaks throughout the Asia-Pacific 

region. The HFMD outbreak, which originated in Sarawak in early April 1997, was mainly 

attributed to the EV71 infection. By June 1997, the disease had subsequently disseminated to 

Peninsular Malaysia (World Health Organization 2011). Despite having the most developed 

healthcare systems and modern technology, Malaysia has experienced the widespread spread 

of this disease. 

Numerous studies have provided evidence indicating that climate change has significant 

effects on various health conditions including HFMD (Guo et al. 2023; Ibrahim et al. 2024; 

Wang et al. 2023; Yang et al. 2024). The findings indicate that there are variations in 

occurrences across different countries. In Rizhao, China (Wu et al. 2014) and South Korea 

(Kim et al. 2016), researchers have confirmed a significant non-linear relationship between 

humidity and HFMD cases. In contrast, studies in Taiwan found a positive linear correlation 

between the two variables (Chang et al. 2012). Furthermore, studies conducted in Hong Kong 

and Shandong Province, China indicate that increase in wind speeds enhances the risk of 

HFMD (Ma et al. 2010; Liao et al. 2015). Nevertheless, only a limited number of studies have 

provided evidence to support these claims. In addition, despite the fact that a significant 

correlation between rainfall and HFMD cases has been established in Singapore by Hii et al. 
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(2011), this finding contradicts a study in Japan, which found no evidence of correlation 

(Onozuka & Hashizume 2011). In summary, the results conducted in those countries were 

inconsistent. Therefore, it is important to also examine these potential influencing factors 

within the context of Malaysia. 

In a study involving HFMD and climate factors, several statistical approaches were used. 

This includes various statistical techniques such as correlation analysis (Leong et al. 2011), 

time-series models (Du et al. 2017), classification and regression tree models (Du et al. 2016), 

and generalized modelling techniques (Onozuka & Hashizume 2011; Li et al. 2014; Kim et 

al. 2016; Chen et al. 2019). Prior studies have mostly employed generalized modelling 

techniques to explore the association between cases of HFMD and climate factors. These 

models include the Generalized Linear Model (GLM) and the Generalized Additive Model 

(GAM). The GLM is a widely employed modelling technique that can incorporate multiple 

statistical models, such as linear regression, logistic regression, and Poisson regression 

(Nelder & Wedderburn 1972). Furthermore, GLM allows for an extension of linear modelling 

concepts to involve a wider variety of response types, including count data and binary 

responses. Two studies used a generalized linear model (GLM) with a negative binomial 

distribution to examine the relationship between HFMD and climate change (Onozuka & 

Hashizume 2011; Li et al. 2014). Both studies employed negative binomial regression to 

address the issue of overdispersion in the datasets. However, the GLM modeling technique 

has certain limitations. One such limitation is its inability to adequately capture the complex 

non-linear and non-monotonic relationships that frequently occur in data structures. 

Following that, several researchers have proposed using the GAM to model the non-linear 

effect with a non-Gaussian response. The GAM approach was used by several researchers to 

examine the non-linear connection that exists between HFMD incidence and climate factors 

(Chen et al. 2014; Kim et al. 2016; Chen et al. 2019). As stated by Hastie and Tibshirani 

(1995), the GAM approach relies on two key assumptions: the function is additive and the 

component is smooth. This modelling approach is a semi-parametric extension of GLM, 

which provides for flexible handling of non-linear covariate effects. For example, a study in 

China used Poisson auto-regression combined with GAM modeling to determine the non-

linear relationship between climate variables and the incidence of HFMD (Chen et al. 2014). 

A penalized smoothing spline of time with six degrees of freedom per annum was 

incorporated into the model to account for the long-term trend and seasonal cycle. As a result, 

the study found that meteorological factors significantly contribute to HFMD transmission in 

Guangzhou, China (Chen et al. 2014). 

Another study in China used a GAM with negative binomial family to evaluate the non-

linear link between the weekly number of HFMD cases with the average temperature, relative 

humidity, and Baidu index (BDI) in two cities in China (Chen et al. 2019). The study shows 

that the GAM approach is useful in determining the exposure-response relationship for 

various types of data, particularly when exploring non-parametric relationships. In Malaysia, 

there are only a few studies focusing on HFMD cases and climate factors using the GLM and 

GAM approaches, particularly in the East Coast region. To the best of our knowledge, this is 

the only study that specifically examines the East Coast. Prior studies were limited to the 

Selangor central region of Malaysia (Wahid et al. 2021) and the country as a whole (Wahid et 

al. 2020). Therefore, the objective of this study is to explores the association between HFMD 

and climate factors along the East Coast of Malaysia through the use of the generalized 

approaches to modelling GLM and GAM. In the future, this research could assist health 

policymakers forecast future outbreaks, raise public awareness, and implement an effective 
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HFMD prevention strategy. Malaysians, particularly those residing in Pahang, Kelantan, and 

Terengganu, may therefore take additional measures to prevent the spread of the disease. 

2. Research Method 

2.1.  Study area 

The East Coast of Peninsular Malaysia includes three states which are Kelantan, Terengganu, 

and Pahang. The region covers approximately 132,490 km2 and accounts for nearly 40% of 

Malaysia's total land area. Pahang is the largest state among the three East Coast states, and it 

also the largest state in Peninsular Malaysia. The East Coast region is highly seasonal, with 

strong monsoon winds and heavy rainfall along the coast annually from November to 

February. 

2.2.  Data collection 

The daily HFMD cases for the three East Coast states of Malaysia were obtained from the 

Public Sector Open Data Portal Malaysia for the years 2010 to 2016. The data was made 

available by the Ministry of Health of Malaysia. The collected data was then processed into 

weekly resolutions to ensure consistency with the existing climate data. The climate data 

originated from the Malaysian Meteorological Department (MetMalaysia) and included 

weekly temperatures (in degrees Celsius), relative humidity (as a percentage), rainfall (in 

millimeters), and wind speed (in meters per second). The data used in this study covers the 

years 2010 to 2016 to align with the HFMD data. 

2.3.  Statistical methods 

The analysis in this study is divided into several sections, which include multicollinearity 

testing, overdispersion testing, covariate selection for the model, model development, model 

evaluation, and model validation. The steps for modelling the association between HFMD 

cases and climate factors in Malaysia's East Coast region are described in greater detail in the 

subsequent section. This study also takes into account the delayed effects of climate factors 

and incubation periods. This is due to changes in climate conditions, which may have an 

impact on the HFMD characteristics. Several studies claim that using climate variables with a 

two-week lag period enhances the risk of HFMD (Ma et al. 2010; Hii et al. 2011; Kim et al. 

2016). It is related to the incubation period for enteroviruses as well as the possibility of 

parental knowledge and response to children's signs and symptoms. All statistical analyses in 

this study were performed using the ‘mgcv’ package in R programming software. 

2.3.1. Multicollinearity test 

Multicollinearity occurs when highly correlated factors in the regression model are examined. 

Following that, it is expected that there will be multicollinearity between the climate variables 

used in this study. Multicollinearity can lead to several potential issues, such as inflated 

standard errors. The standard errors of the coefficient estimates increase, making it difficult to 

determine the individual effect of each predictor variable. This may lead to wide confidence 

intervals and less reliable hypothesis tests (Neter et al. 1996). Additionally, unstable 

coefficients may arise, where the estimates become very sensitive to changes in the model, 

such as adding or removing variables. This can result in misleading interpretations, as small 

changes in the data can lead to large swings in the estimated coefficients (O’Brien 2007). 

Furthermore, multicollinearity complicates the identification of which variables are actually 
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significant predictors of the dependent variable, as the shared variance between predictors can 

obscure their individual effects (Allison 1999). Thus, this study used the variance inflation 

factor (VIF), corrected variance inflation factor (CVIF), and tolerance (TOL) to detect 

multicollinearity. The climate variables are found to be highly correlated if the VIF value is 

greater than 5 (Kutner et al. 2005), the CVIF value is greater than or equal to 10, and the TOL 

value is close to 0 (Marquardt 1970). The next modelling phase will eliminate the highly 

correlated climate variables. 

2.3.2. Overdispersion test 

The test for overdispersion is an important component of regression analysis that must be 

addressed. Considering that the data used in this study comprises of count data, a Poisson 

distribution is the best approach. Nonetheless, when using Poisson regression to model data, 

overdispersion is frequently observed. The standard errors could possibly be underestimated 

due to the overdispersion issue, leading to incorrect inferences about the regression 

parameters. This problem arises when the variance of the response variable exceeds its 

expected value (Krzanowski 1998). Therefore, an overdispersion test developed by Cameron 

and Trivedi (1990) was used in this study to detect these issues. The following presents the 

hypothesis for the test. 

 

𝐻0: There is no evidence of overdispersion in the datasets 

𝐻1: There is evidence of overdispersion in the datasets 

 

The rejection of the null hypothesis suggests that overdispersion is present in the datasets. 

To address this issue, a negative binomial regression model is recommended (Breslow 1984). 

The negative binomial distribution includes an extra parameter that provides increased 

flexibility in modeling variance, which can exceed the mean. In many situations involving 

count data, especially when the variance is significantly greater than the mean, the Poisson 

distribution can result in poor model fit and biased estimates (Cameron & Trivedi 2013). By 

incorporating this additional parameter, the negative binomial distribution effectively 

accommodates the extra variation, offering a more accurate representation of the underlying 

structure of the data (Hilbe 2011). 

2.3.3. Stepwise covariate selection method 

The stepwise method is a hybrid of forward and backward selection processes that allows for 

movements in both directions and the inclusion and exclusion of variables at multiple steps. 

The process can start with either a backward elimination and a forward selection process 

(Chowdhury & Turin 2020). This study employed the forward stepwise selection method, 

which is commonly used in various applications (Cheong et al. 2013). Additionally, in terms 

of model interpretability, forward stepwise selection begins with no predictors and adds them 

incrementally based on a chosen criterion. This approach provides clearer insights into how 

each predictor contributes to the model. In contrast, backward elimination starts with a full 

model, which can make it more challenging to interpret the incremental effect of each 

variable (Hastie et al. 2009). Furthermore, forward selection tends to be less computationally 

intensive, particularly when dealing with a large number of predictors. By starting with an 

empty model, it eliminates the need to evaluate all possible models, as is required in 

backward selection, making it especially advantageous for high-dimensional datasets (Miller 

2002). Thus, a stepwise forward selection approach was used in selecting the climate 

variables for the selection of the optimal model. This selection of the best model is based on 
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the Akaike Information Criterion (AIC) criterion which results in a sparse model (Akaike 

1998). The best significant model is believed to be associated with a low value of AIC. AIC is 

calculated using the formula: 

 

AIC = 2𝑘 − 2ln(𝐿)     (1) 

 

where k is the number of estimated parameters in the model and L is the maximum value of 

the likelihood function for the models. The covariate selection process is as follows: 

 

(1) Develop a GLM and GAM model for each of the climate factor. The lowest AIC value 

indicates the best single predictor. 

(2) Develop a two-predictor model by adding the best climate factor identified in the first 

step as the first predictor, followed by the second predictor (other climate factors). The 

lowest AIC value indicates the best second predictor. 

(3) Continue the process until adding predictors does not result in smaller than the earlier 

model. 

(4) The selected predictors can be found in the model with the lowest AIC value. 

2.3.4. Generalized modelling techniques 

Two distinct generalized modelling approaches, namely the GLM and GAM, were employed 

in this study. The following section explains the specifics of each approach. The Poisson 

regression technique can be used to model response variables that describe either count or 

discrete data (Nelder & Wedderburn 1972). As the data on HFMD cases in Malaysia consists 

of non-negative integers and is not normally distributed, a Poisson model will be applied to 

this study. 

 

(a) Generalized Linear Model 

Generalized Linear Models (GLM) were formally introduced in 1972 by John Nelder and 

Robert Wedderburn. GLM is a more advanced version of classical linear models that allows 

general linear regression to be approached using a variety of response variables, including 

count, binary, proportions, and continuous distribution. This GLM is regarded as a valuable 

and widely used method due to its ability to handle a wide range of statistical problems 

(Nelder & Wedderburn 1972). The general form of a GLM can be formally written as: 

 

𝑔(𝜇𝑖)  = 𝛽0 + 𝛽1(𝑥𝑖1)+. . . +𝛽𝑝(𝑥𝑖𝑝)     (2) 

 

where 𝑖 =  1, 2, 3, … , 𝑛  and 𝑔(𝜇𝑖) is a link function that relates the mean of the response 

variable 𝜇𝑖 to the linear predictor. 𝑥1, …,𝑥𝑝 represent the independent variables, or predictors, 

where p is the number of predictors in the model. The symbol of 𝛽0 is the intercept, and the 

coefficients are denoted as 𝛽1, …, 𝛽𝑝. 

 

(b) Generalized Additive Model 

Generalized Additive Models (GAM) are non-parametric regression models developed in 

1986 by Trevor Hastie and Robert Tibshirani. This method is an extension of the GLM 

approach by substituting the predictor, which consists of a sum of smooth functions (Hastie & 

Tibshirani 1990). The GAM modelling approach is frequently employed when there is no 

prior basis for selecting a particular response function, such as linear, quadratic, or other 

(Wood 2017). Besides, the GAM approach allows for considerable flexibility in describing 
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response predictors for both linear and non-linear relationships. The GAM requires the 

resolution of three issues that are absent in linear modeling. These issues include the 

representation of smooth functions, the controllable degree of smoothness, and the selection 

of the most appropriate level of smoothness in a data-driven way (Wood 2017). The general 

structure of a GAM can be formally written as: 

 

𝑔(𝜇𝑖)   = 𝛽0 + 𝑠1(𝑥𝑖1)+. . . +𝑠𝑝(𝑥𝑖𝑝)         (3) 

 

where 𝑖 =  1, 2, 3, … , 𝑛. 𝛽0 is the intercept and 𝑔(𝜇𝑖) is a link function that relates the mean 

of the response variable 𝜇𝑖  to the linear predictor. 𝑥1 , …,𝑥𝑝 represents the independent 

variables, or predictors, where 𝑝  is the number of predictors in the model. 

𝑠1(𝑥𝑖1)+. . . +𝑠𝑝(𝑥𝑖𝑝) are smooth function of the predictors 𝑥1, …,𝑥𝑝. These functions can be 

splines or other smooth functions that allow for non-linear relationships between the 

predictors and the response variable. 

The smooth function, 𝑠, is composed of the sum of the basis function, 𝐵, which has been 

chosen for its convenient properties, and its corresponding regression coefficients, 𝛽 (Wood 

2017). The following equation represents a smooth function. 

 

𝑠𝑝(𝑥𝑖𝑝) = ∑ 𝛽𝑖𝑝𝐵𝑖𝑝(𝑥𝑝)
𝑚𝑝

𝑖=1
          (4) 

 

where 𝑚𝑝  is the number of basis function for the 𝑝-th predictor, 𝛽𝑖𝑝  are the coefficients 

associated with the 𝑖 -th basis function for the 𝑝 -th predictor, and 𝐵𝑖𝑝(𝑥𝑝) are the basis 

function, which could be splines, polynomial function, or other smooth functions. 

2.3.5. Model development of HFMD and climate factors 

In this study, the GLM and the GAM with Poisson family are two statistical modelling 

approaches used to study the impact of climate factors on HFMD in Malaysia's East Coast 

region. For GLM and GAM models, the general equations are denoted by Eqs. (5) and (6), 

respectively. The primary difference between the two models lies in the fact that GLM 

expands upon the classical linear model by incorporating response variables from any 

exponential family. In contrast, GAM offers the linear predictor substantial flexibility through 

the inclusion of local smooth functions. Thus, the GAM method is capable of accounting for 

the nonlinear relationship between HFMD and climate factors in this study. The complete 

model for GLM and GAM employed in the analysis of each state on the East Coast is 

represented by the equation below. 

 

(a) GLM full model 

 

ln[𝐸(𝐻𝐹𝑀𝐷𝑖)]  = 𝛽0 + 𝛽1(Temperature𝑖)𝑡−2 + 𝛽2(Humidity𝑖)𝑡−2 + 

                                     𝛽3(Rainfall𝑖)𝑡−2 + 𝛽4(Wind speed𝑖)𝑡−2 +  𝛽5(Time𝑖)  
 (5) 

 

(b) GAM full model 

 

ln[𝐸(𝐻𝐹𝑀𝐷𝑖)]  = 𝛽0 + s(Temperature𝑖)𝑡−2 + s(Humidity𝑖)𝑡−2   
                                               +s(Rainfall𝑖)𝑡−2 + s(Wind speed𝑖)𝑡−2  

                                               + s(Time𝑖, df = 4/year)  
(6) 
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In these two equations, 𝑖 represents the week of HFMD cases, 𝑖 = 1, 2, 3, … , 365, 𝛽0  is 

the intercept, and s(variable)𝑡−2denotes the effect of all climate variables over a two-week 

period (lag time). The fundamental difference between these two models comes from the 

substitution of the parameter in Eq. (5) with a smoothing function 𝑠(. ), which can be seen in 

Eq. (6) above. In order to control the seasonal impact and long-term trend of HFMD in 

weekly cases, a time variable was incorporated into both models. Seasonality and the long-

term trend pertain to time series data that exhibits a consistent upward or downward pattern, 

often involving a number of years (Siegel 2016). For GAM, a smoothing spline of time with 

four degrees of freedom (df) per year was applied. In the GAM model, a cyclic cubic 

regression spline is used as a smoothing spline, which is particularly suitable for cyclical or 

seasonal data (Underwood 2009; Sigauke et al. 2019). As mentioned previously, this study 

employed the cyclic cubic regression spline due to the seasonal patterns observed in the 

Malaysian HFMD and climate data.  

In this study, both GLM and GAM models employed a log link function for the expected 

value of the response variable (HFMD cases). This choice ensures that the predicted values 

remain positive, which is essential when modeling counts or other strictly positive outcomes 

(McCullagh 1989). The log link function also enables a multiplicative relationship between 

the predictors and the response variable, allowing for easier interpretation of the effects of 

predictors as proportional changes rather than absolute changes (Hilbe 2011). Additionally, 

the log link function stabilizes variance in situations where the response variable exhibits 

positive skew, facilitating more robust modeling of complex relationships within the data 

(Hardin & Hilbe 2007).  

2.3.6. Criteria for the best model selection 

In evaluating the performance of statistical models, root mean square error (RMSE) and mean 

absolute error (MAE) have been widely used in meteorology and climate research studies 

(Chai & Draxler 2014). Following that, the RMSE and MAE values were used to measure the 

accuracy of each model in this study. The model with the best performance is the indicated by 

the estimated model that has the lowest values for both criteria. The RMSE and MAE can be 

calculated using the following formulas. 

 

RMSE = √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1     (7) 

 

MAE = 
1

𝑛
|∑ 𝑦𝑖 − 𝑦̂𝑖

𝑛
𝑖=1 |    (8) 

 

2.3.7. Model validation 

The best approach for time series cross-validation is the rolling basis cross-validation 

introduced by Hyndman. This technique of cross-validation is applicable when dealing with 

time-series data and dependent observations (Hyndman 2014). A rolling basis of cross-

validation was employed in this analysis process. The process of cross-validation is described 

in greater detail below. 

 

(1) Split the HFMD data into subsets based on years from 2010 to 2016. 

(2) Start the rolling basis cross-validation using the observation of the HFMD data in 2010 

for training purposes and test the model using the observation in 2011. 
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(3) Calculate the accuracy of the testing data for the year 2011 using the RMSE. 

(4) Use the observation from 2010 to 2011 as training data, and then test the model with the 

observation from 2012 as testing data. 

(5) Repeat the process using all previous years data until the last set of observations in 2016. 

(6) Compute the accuracy of the model by averaging the RMSE over the six test sets. 

 

As a result, the model’s accuracy can be determined using the formula as shown below. 

 

RMSEcv =
RMSE2011+RMSE2012+RMSE2013+RMSE2014+RMSE2015+RMSE2016

6
     (9) 

3. Results  

3.1. Multicollinearity test for each state in East Coast region 

Multicollinearity occurs when two or more climate factors in the model show a significant 

correlation with one another. As a result, this section examines issues related to 

multicollinearity. The findings regarding multicollinearity for the three states representing the 

East Coast region are summarized in Table 1. The results indicate that the VIF, CVIF, and 

TOL values for each state's climate factors are all less than 5 and 10, and greater than 0, 

respectively. This demonstrates that multicollinearity does not exist among the variables in 

the datasets for each state. Consequently, each climate factor can be incorporated into the 

modeling phase. 

Table 1: Multicollinearity test for climate factors in each East Coast Region 

States 
Multicollinearity Test Overdispersion Test 

Climate Factors VIF Tolerance CVIF Dispersion z-values p-values 

Pahang Temperature 1.9639 0.5092 1.9437 

10.8328 4.9255 0.0000*** 
Humidity 1.9169 0.5217 1.8972 

Rainfall 1.3655 0.7324 1.3515 

Wind speed 1.3448 0.7436 1.3310 

Kelantan Temperature 1.6334 0.6122 1.6312 

26.2840 4.1974 0.0000*** 
Humidity 2.2907 0.4365 2.2876 

Rainfall 1.7311 0.5777 1.7288 

Wind speed 1.1815 0.8464 1.1799 

Terengganu Temperature 1.6115 0.6206 1.6208 

10.3708 4.1804 0.0000*** 
Humidity 1.9771 0.5058 1.9886 

Rainfall 1.7461 0.5727 1.7563 

Wind speed 1.2226 0.8179 1.2297 
Significant codes: 0.05 ‘***’ 

 

3.2. Overdispersion test for each state 

Overdispersion is a common problem in Poisson regression modelling. The problem could 

occur when the variance of the response variable exceeds its expected value. Thus, the 

overdispersion issues were addressed in this study by first checking their presence in the 

datasets before proceeding with the analysis. Based on the test mentioned before, the rejection 

of the null hypothesis implies that the datasets are overdispersed. The results of the 

overdispersion test for each state in the East Coast region of Malaysia are presented in Table 

1. The dispersion parameter is high and the p-values for all tests in each state are less than 

0.05, providing sufficient evidence to reject the null hypothesis. The results imply that 
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overdispersion problems are present in the datasets for each state. Consequently, in order to 

address these difficulties, a Negative Binomial regression model has been suggested. Thus, in 

the following analysis, GLM and GAM of the Negative Binomial were performed.         

3.3. Covariate selection for GLM and GAM 

The modelling analysis begins with the covariate selection for GLM and GAM. In this study, 

the covariate selection was done using a stepwise forward method for identifying the best 

optimal GLM and GAM models for HFMD-Climate. Table 2 shows the covariate selection 

for the Pahang GLM and GAM models. A single-predictor GLM model was first developed 

for each climate factor; the model, which includes temperature, showed the smallest AIC 

value with in comparison to the other models. This indicates that the temperature is the most 

important factor in the model. Following that, a model with two predictors was developed, 

followed by models with three and four predictors. The lowest AIC values, on the other hand, 

result in a model that consists of only temperature. This implies that the temperature factor is 

only one element of the optimal GLM model for Pahang.  

Table 2 summarized the covariates included in the GLM and GAM models. The results 

suggest that the GLM model for each state takes into account different climate factors. 

Climate factors such as temperature, humidity, and wind speed are required for the 

Terengganu model in the East Coast region. In contrast, Kelantan revealed a different result, 

as the model only requires humidity and rainfall. Additionally, the Pahang model consists 

only of a temperature parameter. The GAM model produced consistent results with only 

temperature as significant variable for all states in the East Coast region. Notably, the best 

model exclusively included only temperature factor. Overall, the covariate selection analysis 

demonstrated that the GLM model showed a different impact of climate factors on HFMD, 

while the GAM model detected similar variables. These findings could be influenced by the 

GLM and GAM models' unique characteristics. Therefore, model comparison is required to 

find the best model with climate factors that affect significantly HFMD cases in the East 

Coast region of Malaysia. 

Table 2: Summary of the significant covariates based on GLM and GAM analysis 

States GLM Negative Binomial GAM Negative Binomial 

Pahang Temperature Temperature 

Kelantan Humidity, Rainfall Temperature 

Terengganu Temperature, Humidity, Wind speed Temperature 

 

3.4. Model evaluation for GLM and GAM 

In continuation of the preceding section, a comparison is made between the GLM and GAM 

optimal models in order to determine which model provides a more accurate description of 

the HFMD incidence and climate factors for each state. In this study, the seasonality effect 

and long-term trend of HFMD cases are taken into consideration by including the covariate of 

time in both models.  Based on Table 3 to 5, the GAM model, consisting of a smooth function 

of the climate factors, is used to examine the non-linear association between the HFMD and 

the climate factors. In contrast, the GLM model only takes into account a linear relationship. 

In the GAM model, the abbreviation edf stands for effective degree of freedom. An edf value 

of one signifies a linear correlation between HFMD incidence and climate factors, whereas a 

value greater than one suggests a non-linear relationship. If the edf for a smoothing spline of 
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the climate factors is less than one, it is eliminated since it suggests a linear relationship 

(Wood 2015). 

Tables 3 to 5 show the results of the best GLM and GAM Negative Binomial models for 

each state. Table 3 presents the findings of the GLM Negative Binomial and GAM Negative 

Binomial models, showing that both models consider the same climate factors affecting 

HFMD cases in Pahang. A significant association between HFMD and time was found, as the 

p-value was less than 0.05. This indicates that the HFMD cases in Pahang follows a long-term 

trend and exhibits a seasonal effect. In GLM Negative Binomial, the temperature with a two-

week lag period has a significant positive linear association with HFMD cases. The model 

indicates an increase in temperature is associated with 15.96% increase in the risk of 

developing HFMD cases over the subsequent two weeks [(𝑒0.1481 − 1) ×100% = 15.96%]. 

The GAM Negative Binomial showed a significant non-linear association between 

temperature and HFMD cases in Pahang, as shown by 𝑝-values less than 0.05. The value of 

edf in the GAM Negative Binomial is 2.238, indicating significant proof for a non-linear 

association between HFMD cases and temperature at a two-week lag. 

Table 3: Model evaluation for Pahang 

Model GLM Negative Binomial GAM Negative Binomial 

Linear terms Estimate 
Standard 

Error 
𝑝-value Estimate Standard Error 𝑝-value 

Constant -9.1456 1.7640 0.0000*** 1.4004 0.0429 0.0000*** 

Temperature 0.1481 0.0543 0.0064*** - 

Time 0.4305 0.0773 0.0000*** - 

Smooth terms edf Ref.df Chi-square 𝑝-value edf Ref.df Chi-square 𝑝-value 

s(Temperature) - 2.238 18 7.591 0.0080*** 

s(Time) - 21.703 26 414.957 0.0000*** 

RMSE 7.5151 5.4991 

MAE 4.8158 3.2383 

Significant codes: 0.05 ‘***’; edf is the effective degree of freedom; Ref. df is reference degree of freedom 

 

Table 4 shows the results for the states of Kelantan. The GAM Negative Binomial model 

indicates that temperature at a two-week lag has no significant association with HFMD, as the 

p-value is greater than 0.05. Contrary findings obtained from the GLM model show a 

significant association between HFMD cases and both humidity and rainfall. According to the 

GLM Negative Binomial model, a two-week delay in humidity increased the risk of HFMD 

incidence in Kelantan by 6.49% [(𝑒0.0629 − 1) ×100% = 6.49%], whereas a two-week delay 

in rainfall decreased the risk of HFMD incidence by 1.67% [(𝑒0.0166 − 1) ×100% = 1.67%]. 

Besides, HFMD cases and time demonstrate a significant relationship in both models, with a 

𝑝-value less than 0.05. This suggests the presence of a long-term trend and seasonal effects in 

HFMD cases in Kelantan. 

Table 5 presents the findings of modelling HFMD and climate factors in Terengganu by 

applying GLM Negative Binomial and GAM Negative Binomial. Both models indicate a 

significant relationship between HFMD and time as the p-value was less than 0.05, implying 

that HFMD cases in Terengganu exhibit a long-term trend and seasonal effect. The p-values 

for humidity and wind speed at a two-week lag period in the GLM Negative Binomial model 

are statistically significant, as the p-values are less than 0.05. This implies there is an 

association between humidity and wind speed in the following two weeks and HFMD cases in 

Terengganu. The risk of HFMD will decrease by 6.13% [(𝑒0.0595 − 1) ×100% = 6.13%] with 

an increase in humidity and by 47.40% 47.40% [(𝑒0.3880 − 1) ×100% = 47.40%] with an 
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increase in wind speed, both with a two-week time lag. The GAM Negative Binomial model, 

however, identifies distinct and significant climate factors. The only variable that displays a 

non-linear correlation with HFMD cases is temperature, with p-values below 0.05 when 

considering a lag period of two weeks. The edf values for temperature exceed one, indicating 

that the relationship between HFMD and temperature exhibits non-linear patterns. 

 

Table 4: Model evaluation for Kelantan 

Model GLM Negative Binomial GAM Negative Binomial 

Linear terms Estimate 
Standard 

Error 
𝑝-value Estimate 

Standard 

Error 
𝑝-value 

Constant -9.1713 2.1753 0.0000*** 1.6263 1.3214 0.218 

Humidity 0.0629 0.0209 0.0026*** - 

Rainfall -0.0166 0.0073 0.0237*** - 

Temperature - 0.0039 0.0483 0.935 

Time 0.41353 0.08613 0.0000*** - 

Smooth terms edf Ref.df Chi-square 𝑝-value edf Ref.df Chi-square 𝑝-value 

s(Time) - 22.64 26     1289 0.0000*** 

RMSE 16.8586        7.2853 

MAE 9.6908        3.7780 
Significant codes: 0.05 ‘***’; edf is the effective degree of freedom; Ref. df is reference degree of freedom 

 

Table 5: Model evaluation for Terengganu 

Model GLM Negative Binomial GAM Negative Binomial 

Linear terms Estimate Standard Error p-value Estimate Standard Error p-value 

Constant -0.0566 3.1439 0.9856 1.2828 0.0413 0.0000*** 

Temperature 0.12981 0.0721 0.0717 - 

Humidity -0.0595 0.0160 0.0002*** - 

Wind speed -0.3880 0.1212 0.0014*** - 

Time 0.6863 0.0741 0.0000*** - 

Smooth terms edf Ref.df Chi-square p-value edf Ref.df Chi-square p-value 

s(Temperature)    - 3.148 18 16.55 0.0000*** 

s(Time)    - 21.441 26 608.31 0.0000*** 

RMSE    6.8046          4.6283 

MAE    4.2729          2.6461 
Significant codes: 0.05 ‘***’; edf is the effective degree of freedom; Ref. df is reference degree of freedom 

 

In terms of the model comparison, the GAM Negative Binomial model performs better 

than the GLM Negative Binomial model in identifying the association between HFMD and 

climate factors in the East Coast region. This is evidenced by the smaller RMSE and MAE 

values. The results suggest that employing the GAM Negative Binomial model is a more 

suitable method for determining the association between HFMD incidence and climate factors 

in Pahang, Terengganu, and Kelantan. The GAM Negative Binomial model provides a 

comprehensive explanation of the non-linear relationship between HFMD incidence and 

climate factors. 

3.5. Model validation 

This study applies rolling basis cross-validation to identify the best and most accurate model 

for describing the association between HFMD incidence and climate factors in each state of 

the East Coast region of Malaysia. Table 6 shows the results of a rolling-basis cross-
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validation method for each model. The GLM and GAM Negative Binomial models are then 

compared by calculating the average values of the RMSE over the six test sets for each state. 

Comparing the two models in each state shows that the GAM Negative Binomial model has 

significantly lower RMSE values than the GLM Negative Binomial model. Thus, the GAM 

Negative Binomial approach is perhaps the most adequate model for describing the 

relationship between HFMD incidence and climate factors in the East Coast region of 

Malaysia. As noted by Hastie and Tibshirani (1986), the GAM model allows for nonlinear 

relationships between predictors and the response variable through smooth functions. This 

flexibility enables the model to capture complex patterns in the data that linear models might 

overlook, thereby enhancing predictive performance. Additionally, GAMs tend to be less 

sensitive to outliers compared to traditional linear models due to their flexible nature. In this 

study, the HFMD data may contain extreme values or noise that could disproportionately 

affect model performance. Therefore, the robustness of GAMs may help address these issues 

(Wood 2017). 

Table 6: Rolling basis cross-validation of each model for East Coast region 

RMSE 
Pahang Terengganu Kelantan 

GLM  GAM  GLM GAM GLM GAM  

1 3.4999 5.4736 2.2602 .5061 3.7705 4.1883 

2 9.6821 8.3778 7.0395 6.0322 42.5385 41.7094 

3 5.9739 3.7638 5.2979 2.8556 58.5671 6.1104 

4 3.8034 3.9107 5.7894 7.6691 17.8728 12.3538 

5 4.6113 4.6167 7.3107 2.0936 17.3243 2.5569 

6 18.5447 17.6937 16.8619 18.6782 18.5569 21.8334 

Average 

RMSE 
7.6859 7.3061 7.4266 6.8058 26.4384 14.7920 

 

3.6. Final model  

The best model for each state on the East Coast has been identified through the process of 

model validation. Eqs. (10)-(12) were constructed from the best models presented in Tables 3 

to 5. Eq. (10) provides the equations related to the GAM Negative Binomial models for 

Pahang. Figure 1a) displays the smoothed temperature and HFMD incidence curves from the 

GAM Negative Binomial model. A GAM Negative Binomial model suggests that 

temperatures between 26.5°C and 28°C will decrease the risk of HFMD in Pahang over the 

next two weeks. Meanwhile, the risk of HFMD will increase when temperatures exceed 28°C. 

 

ln[𝐸(𝐻𝐹𝑀𝐷PAHANG)]    = 1.4004 + s(Temperature)𝑡−2 + s(Time)  (10)  

 

Moreover, the model equations for the GAM Negative Binomial models for Kelantan and 

Terengganu are given by Eqs. (11) and (12), respectively. Figure 1(b) depicts the smoothed 

association between of HFMD incidence and temperature in Terengganu. It demonstrates that 

temperatures between 27°C and 28.5°C substantially decreases the risk of HFMD over the 

next two weeks. In contrast, the risk of HFMD will increase when the temperature exceeds 

28°C. 

 

ln[𝐸(𝐻𝐹𝑀𝐷KELANTAN)]    = 1.6263 + 0.0039Temperature 𝑡−2 + s(Time)  (11) 

 

ln[𝐸(𝐻𝐹𝑀𝐷TERENGGANU)]    = 1.2828 + s(Temperature)𝑡−2 + s(Time)  (12) 
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Figure 1: GAM smoothed association between HFMD and climate temperature for Pahang and Terengganu 

 

The final model indicates that climate factors, specifically temperature with a two-week 

lag effect, are the primary predictors of HFMD cases in the East Coast region of Malaysia. 

The findings of this study align with previous research conducted in China (Chen et al. 2014; 

Wu et al. 2014; Du et al. 2017), Singapore (Hii et al. 2011), South Korea (Kim et al. 2016), 

Vietnam (Thanh et al. 2016), and Japan (Onozuka & Hashizume 2011). These studies indicate 

that climate variables, particularly temperature, play a significant role in the occurrence of 

HFMD cases. However, several studies conducted in various regions of China have shown 

that the incidence of HFMD is not significantly effect by temperature (Liao et al. 2015; Chen 

et al. 2019). These concerns are affected by a variety of factors, including the geographical 

location of each region or state, monsoon, and topographical effects. 

The effect of the temperature on HFMD cases on the East Coast of Malaysia, however, is 

different between states. In Pahang and Terengganu, the association between HFMD and 

temperature shows almost the same wave-shaped curve. The curve shows that the risk of 

HFMD cases decreased  temperatures ranging over the next two weeks with temperatire 

ranging from 26°C to 28°C. In contrast, the risk of HFMD increases when the temperature 

exceeds 28°C. These results may be explained by the fact that temperatures could affect the 

virus's ability to develop and remain alive (Chang et al. 2012). For instance, the virus 

exhibited a higher rate of reproduction and increased longevity at high temperatures compared 

to low temperatures. Consequently, the increase in HFMD cases was immediate and 

prolonged in areas with high temperatures. However, HFMD cases in Kelantan are not 

significantly affected by temperature. The variability of the findings in this study may be 

affected by location-specific factors. Further inquiry is required to determine the causes of the 

inconsistencies. According to some studies, temperature affects population behaviors and 

activities, as well as the survival and transmission of pathogenic microorganisms in the 

environment, which in turn affects the dynamics of infection transmission (Lin et al. 2013). 

These significant elements might be connected to behavior in people. People may decide to 

stop all activities, feel uncomfortable in crowded places when the temperature rises, and stay 

indoors (Kim et al. 2016). In these circumstances, the risk of HFMD cases will be minimized 

by the absence of contact with others. 

4. Conclusion  

In summary, the study found that climate factors have a significant impact on HFMD 

incidence; however, the effect varies by state in Malaysia's East Coast region. The findings 

show that temperature is the primary determinant of HFMD incidence in this region. 
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Furthermore, the GAM techniques provided the most substantial evidence of a nonlinear 

association between HFMD and climate factors in each state. This study also indicates that 

incorporating a smooth nonlinear function into the model gave GAM valuable additional 

flexibility for examining the non-parametric relationship between HFMD incidence and 

climate parameters. The study's findings have several implications for future HFMD 

prevention strategies in East Coast Malaysia. For climate-based monitoring, implementing an 

early warning system that tracks temperature changes can help predict HFMD outbreaks, 

allowing for timely interventions. Understanding that temperature affects HFMD differently 

across states enables the development of tailored strategies. For instance, specific temperature 

thresholds in Pahang and Terengganu can guide preventive measures. Raising awareness 

about the relationship between climate and HFMD can also encourage communities to adopt 

preventive measures during high-risk periods. Policymakers can integrate climate data into 

public health planning to enhance the overall effectiveness of HFMD prevention strategies. 

Local authorities could implement public awareness campaigns to educate communities about 

the connection between climate conditions and HFMD, empowering caregivers to recognize 

symptoms and adopt preventive measures. Enhanced hygiene and sanitation efforts, 

particularly during high-risk periods identified by climate data, are essential in public spaces, 

schools, and childcare facilities. These measures can significantly reduce HFMD incidence, 

particularly in the East Coast region. 

Some limitations were acknowledged in this study. Although the GAM yielded superior 

results compared to the GLM, both models are constrained by the assumption of 

independence among response variables. The weekly HFMD data utilized in this study are 

characteristic of time-series data, which frequently exhibit issues of autocorrelation. When 

autocorrelation is present, it can result in biased parameter estimates and inaccurate 

conclusions. Specifically, autocorrelation may inflate the significance of predictors, leading to 

an overestimation of their effects, while also underestimating the model's standard errors, 

thereby producing overly optimistic confidence intervals. To address these limitations, future 

research should consider employing models that explicitly account for autocorrelation, such 

as Generalized Least Squares (GLS) or Mixed-Effect Models. These models are capable of 

incorporating random effects to account for temporal or spatial correlations within the data. 

Additionally, it is imperative that future studies conduct thorough exploratory data analyses to 

identify potential sources of autocorrelation prior to modeling. This proactive approach can 

inform the selection of appropriate modeling strategies and ensure that the underlying 

assumptions are adequately met. Furthermore, researchers might also investigate additional 

variables that could influence HFMD cases, including population density, air pollution, 

geographical location, monsoon patterns, topographical factors, and socioeconomic 

conditions. 
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