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ABSTRACT  

Effective and accurate prediction of the COVID-19 rate is vital for effective public health 

monitoring and intervention, but forecasting models are often hindered when it comes to 

striking a balance between accuracy and computing efficiency. This often calls for better 

prediction models that can effectively capture the dynamics of transmission and can serve as 

an important tool for healthcare policymaking. This study introduces a hybrid model 

combining the 3-step Adams-Bashforth-Moulton (ABM) method with the Runge-Kutta (RK4) 

method to analyze and forecast COVID-19 transmission rates in Malaysia. The hybrid model 

utilize the RK4 method for generating initial solutions and the ABM method for refining 

predictions, which is then used to solve the SIRS compartmental using Malaysia-specific 

COVID-19 data, including confirmed cases, recoveries, deaths, population size, and contact 

rates. The hybrid RK4-ABM model demonstrates enhanced accuracy in predicting COVID-19 

transmission rates. By combining the computational efficiency of RK4 with the accuracy of 

ABM, the model delivers improved forecasting performance over time. The study will be of 

massive contribution to epidemiological research by demonstrating the RK4-ABM model's 

effectiveness in predicting COVID-19 transmission rates and providing valuable insights for 

healthcare policymakers in Malaysia. This hybrid RK4-ABM model shows potential for future 

epidemic modeling and forecasting, highlighting the importance of mathematical approaches 

in understanding and controlling pandemic impacts. 
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ABSTRAK 

Ramalan yang berkesan dan tepat terhadap kadar COVID-19 adalah penting untuk 

pemantauan dan intervensi kesihatan awam yang berkesan, tetapi model peramalan sering 

mengalami masalah apabila wujud ketidakseimbangan antara ketepatan dan kecekapan 

pengkomputeran. Hal ini memerlukan model ramalan yang lebih baik yang dapat mengesan 

dinamik penularan dan kebolehfungsiaan sebagai alat penting untuk pelaksanaan dasar 

penjagaan kesihatan. Kajian ini memperkenalkan model hibrid yang menggabungkan kaedah 

3-langkah Adams-Bashforth-Moulton (ABM) dengan kaedah Runge-Kutta (RK4) untuk 

menganalisis dan meramalkan kadar penularan COVID-19 di Malaysia. Model hibrid ini 

menggunakan kaedah RK4 untuk menjana penyelesaian awal dan kaedah ABM untuk ramalan 

saringan yang kemudiannya digunakan untuk menyelesaikan bahagian SIRS menggunakan 

data COVID-19 khusus di Malaysia, termasuk kes yang disahkan, pemulihan, kematian, saiz 

penduduk, dan kadar hubungan. Model RK4-ABM hibrid menunjukkan ketepatan yang baik 

dalam meramalkan kadar penularan COVID-19. Dengan menggabungkan kecekapan 

pengiraan RK4 dengan ketepatan ABM, model ini memberikan prestasi ramalan yang lebih 

baik dari masa ke semasa. Kajian ini akan memberi sumbangan besar dalam penyelidikan 

epidemiologi dengan menunjukkan keberkesanan model RK4-ABM dalam meramalkan kadar 

penularan COVID-19 dan memberikan pandangan yang berguna untuk pemantauan penjagaan 

kesihatan di Malaysia. Model RK4-ABM hibrid ini menunjukkan potensi untuk memodelkan 
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dan meramalkan epidemik yang akan datang, seterusnya menekankan kepentingan pendekatan 

matematik dalam memahami dan mengawal kesan pandemik. 

Kata kunci: model epidemik; Runge-Kutta peringkat ke-4; hibrid; kaedah Adam-Bashforth 

 

1. Introduction  

Coronavirus disease (COVID-19), an infectious disease with severe acute respiratory 

syndrome that belongs to coronavirus 2 (SARS-CoV-2), was discovered in a sub-region of 

China, precisely Wuhan in the Hubei province, since its discovery in late 2019 (Zhou & Fan 

2012), a scenario that earned it the popular name (COVID-19). By January 2020. It has 

become popular around the globe, and all hands were on the desk to understand its symptoms 

and non-medical prevention methods since it is new to the world. Quarantine and isolation are 

popular public health practices that are often deployed to prevent the spread of infectious 

disease during disease outbreaks. Most nations adopted these non-medical approaches with 

the ultimate goal of breaking the chain of transmission of COVID-19. Non-medical 

approaches significantly slowed disease spread, while scientists and medical personnel 

worked to understand transmission dynamics, develop treatments, and offer guidance on 

managing the disease. By May 20th, 2020, barely six months after its discovery, the disease 

had infested about 4,806,299 people and the world had recorded about 318,599 deaths related 

to the COVID-19 infection (Giri & Rana 2020). 

 

Malaysia, due to its proximity and relations with China, was vulnerable to the COVID-19 

outbreak. The country received its first warning when a case was detected in Singapore, and 

eight individuals with contact to that case were traced to Johor, Malaysia (Shah et al. 2020). 

The first confirmed COVID-19 case in Malaysia was reported on January 25, 2020. By the 

end of the first wave on February 15, 2020, 22 cases had been confirmed, largely traced back 

to the Singapore case (Hashim et al. 2021). The virus quickly spread across Malaysia, 

reaching 3,662 cases by April 5, 2020. A significant religious gathering at the Sri Petaling 

Mosque in late February to early March 2020 further fueled the surge in cases, with many 

infections believed to have been brought in by international attendees (Alsayed et al. 2020). 

Following two major incidents, the case linked to Singapore and the religious gathering at the 

Sri Petaling Mosque, the potential severity of the COVID-19 outbreak in Malaysia became 

evident. The virus spreads through infected droplets expelled during coughing, sneezing, and 

other forms of physical contact. Malaysia, unprepared for the pandemic, found itself in the 

midst of an outbreak fueled by asymptomatic carriers, including attendees from the mosque 

event and individuals who had contact with the index case. As a result, Malaysia became one 

of the hardest-hit Asian nations, with over 38,000 deaths and more than 5 million affected 

(Shah et al. 2020). Globally, COVID-19 has caused over 700 million illnesses and more than 

6 million deaths as of January 30, 2023, making it one of the most significant threats 

humanity has faced. Despite ongoing efforts, the world is still grappling with the pandemic, as 

cases and deaths continue to rise. 

Undoubtedly, knowing the infection's patterns of transmission, is one of the prominent 

stages required when modelling an infectious disease. Understanding epidemiological trends 

and investigating whether the methods for preventing outbreaks are effective are major 

determinants of mathematical model success (Camacho et al. 2015). Such research and 

analysis will benefit in estimating possibilities for future occurrences, quantifying the threat 

other countries pose, and facilitating the creation of alternate solutions (Abdalla et al. 2023). 
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Real-time analysis of this infectious disease may come with several obstacles and challenges. 

For instance, a lengthy incubation period may delay the onset of clinical symptoms, making it 

more difficult to discover and test for cases in a timely manner. It may also delay the 

assessment and confirmation of cases of infectious diseases. Mathematical modelling 

strategies can overcome these delays and uncertainty by explicitly including delays 

originating from the typical course of infections and reporting systems (Zou et al. 2020; 

Kraemer et al. 2016). These are some of the difficulties that mathematical models can readily 

address while utilizing parameters, and since they are generally accepted, they attract the 

interest of many scholars across many academic disciplines. After COVID-19 became a 

global concern, researchers across various fields united to develop effective strategies to 

combat the pandemic. This led to a surge in studies aimed at analyzing and predicting the 

virus's impact (Chen et al. 2020). Epidemiology, which focuses on investigating disease 

causes, spread, and potential management strategies, became a crucial area of research. 

Mathematics plays a key role in epidemiology, helping to identify disease dynamics and 

transmission patterns through data collection and analysis. Mathematical modeling, 

particularly using compartmental models, has a history of success in studying disease 

transmission. These models divide the population into compartments, with assumptions made 

about movement between them. For example, the susceptible-infective-susceptible (SIS) 

model tracks individuals who move from being susceptible to infected and then back to 

susceptible. Compartmental models have been used to study various diseases, including 

bacterial infections, helminth-borne diseases, and sexually transmitted infections like 

gonorrhea. 

The most prominent compartmental model is SIR, an acronym for susceptible, infected, 

and removed. As a compartmental model, it divides the population into different 

compartments or sections based on their disease status. It has a very simple construction, and 

its analysis has been an inspiration for other compartmental models. Compartmental models 

received acceptance among mathematicians, and much of their success is attributed to 

Hethcote, 1976, 1978, and 1989 (Shah et al. 2020; Brauer 2017). In the SIR model, every 

individual is originally regarded as susceptible (S); after being infected, they transfer to the 

infected (I) compartment, where they are infectious and infect other individuals. Finally, after 

recovering or dying, they move to the Removed (R) compartment, where they are no longer 

susceptible to the disease and cannot spread it to others. In the SIRS, the agent can move back 

to susceptible group and continue with the trend. However, this movement of agents between 

these compartments is controlled by a set of defined differential equations involving the 

transmission rate and recovery rate. A compartmental model is often used to simulate the 

progression of the disease with respect to time and evaluate the impact of various 

interventions, such as vaccination, quarantine, and isolation. The SIR has also witnessed the 

proposal of other variants like SEIR (susceptible, exposed, infected, and recovered) and SIRD 

(susceptible, infected, recovered, deceased) (Viguerie et al. 2021), which incorporate 

additional features by compartmentalizing exposed individuals and deceased individuals, 

respectively.  

However, in order to simulate genuine events and forecast the long-term behaviour of the 

infectious disease, several scientists and researchers have solved the compartmental model 

numerically to get numerical solutions of these models, such as the fourth-order Runge-Kutta 

method (Mohammed et al. 2021), the finite difference method (Chen et al. 2022), and the 

meshless local discrete Galerkin method (Asadi-Mehregan et al. 2023). However, there is no 

documentation of the 3-step predictor-corrector approach being used to simulate COVID-19 

transmission. Several research studies have shown the effectiveness of using numerical 
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methods in solving compartmental models (Ahmed et al. 2020; Yang & Wang 2020). 

Numerical methods are generally effective when working with complex compartmental 

models that lack closed-form analytical solutions; they are mostly simple and provide an 

acceptable approximate solution when properly modelled (Tang et al. 2020). Many real-world 

epidemiological, ecological, and chemical models fall into this category. Numerical methods 

offer a pragmatic approach to approximating solutions for models. Previous attempts, such as 

(Akogwu & Fatoba 2022; Zhang et al. 2022), utilised explicit methods to solve the 

compartmental model for modelling the transmission of COVID-19. Palma and Mungkasi 

(2024) solve the SEIR model using fourth and fifth-order Runge-Kutta methods, and reported 

similarity in the results obtained in their proposed method and Ode45; this justified the 

feasibility of applying numerical solutions in solving compartmental models. However, we 

proposed a hybrid of Runge Kutta of order 4 method and the 3-step ABM predictor-corrector 

method to solve the SIRS compartmental model for a feasible solution and onward projection 

of the COVID-19 transmission in Malaysia. The hybrid model effectively captured the trends 

in COVID-19 real data, demonstrating its potential as a reliable numerical technique and 

forecasting tool. It will offer valuable insights for stakeholders managing disease outbreaks 

and serve as an additional resource in the field of epidemiology.  

2. SIRS Model 

In this study, the SIRS model is used to predict the spread of COVID-19 in Malaysia, 

SIRS is an extension of the susceptible-infectious-Removed (SIR) model, which is described 

as susceptible-infectious-Removed-Susceptible. The SIRS model divides the population into 

three compartments or groups: susceptible, infected, and recovered. Susceptible individuals 

are members of the population who are not immune to the disease and can be infected. 

Infected individuals are members of the population who have been exposed to the disease and 

are capable of transmitting it to others. Recovered individuals are those who have been 

infected with the disease and have subsequently recovered. They are no longer capable of 

transmitting the disease, but they may be immune to it (Salman et al. 2021).  In using the 

SIRS model, we make the assumption that agents can only move in one direction between 

compartments. Susceptible people can contract the infection; infected people can recover, but 

recovered people cannot contract the infection again. The SIRS model is mostly used to 

forecast how many members of the population will be present in each compartment over time. 

The model can be deployed to evaluate how different measures, such as vaccination and 

quarantine, will affect the disease's transmission. The SIRS model is simple, effective, and 

offers a quick understanding of disease transmission. Thus, the SIRS model is also based on 

some restrictions, which include homogeneity of the population and the assumption of 

constant rate infection. In this research, N is used to represent the total populations, which is 

made up of three compartments: the susceptible population denoted by ( )S t , the infected 

population denoted ( )I t and, the removal class represented by ( )R t which is made up of 

recovered and death cases. 

3. Mathematical Formulation of SIRS Model 

The mathematical formulation framework used in this study is based on the type of SIRS 

model that describes the incorporation effects of different epidemiological parameters on 

COVID-19 outbreaks, such as the lack of medical resources, interaction rate and the potential 

for reinfection, among others, as described in (Mohd & Sulayman 2020; Salman et al. 2021).  
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dS SI
N R S

dt N


  = − + −                                    (1) 

 

( )
dI SI I

I
dt N I

 
 


= − + −

+
                                              (2) 

 

( )
dR I

I R
dt I


  


= + − +

+
                                       (3) 

 

where N denotes the total population and it is calculated using N S I R= + + , where S denotes 

the susceptible population, I denotes the infected population, and R represents the removed 

population (recovered or dead). In Eqs. (1)-(3) above,   denotes the birth rate,   is 

transmission rate,   denotes the reinfection rate,   represent the death rate,   is recovery 

rate from the diseases. Since we are dealing with the SIRS compartmental model, it can be 

assumed that a small fraction of recovered individuals from the removal class can re-enter the 

susceptible compartment with a rate of  and that this rate corresponds to the reinfection rate. 

This will assist our model to capture the necessary information regarding the COVID-19 

transmission dynamics, since there is no evidence of developing immunity against COVID-

19. However, the term ( )I I  + can be used to demonstrate the effects of the COVID-19 

outbreak in restricted or limited medial resources (Zhou & Fan 2012) .   denotes the medical 

resources available per unit time and  is half-saturation constant (Salman et al. 2021). This 

quantity represents the efficiency of the supply of medical resources, and this situation would 

depend on other factors like control strategies (such as movement control orders, quarantine), 

the supply of drugs and vaccines among other factors. Half-saturation constant is frequently 

used in disease modeling. It plays an important role in modelling the dynamics of interactions 

between populations, resources, and limiting factors. In disease modelling, the half-saturation 

coefficient is associated with models that involve the transmission and growth of infectious 

diseases within a population (Mohd & Sulayman 2020). The parameters used in this research 

are all assumed to be non-negative to efficiently suit COVID-19 transmission dynamics. 
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Figure 1: 1Illustration of the movement of agents within the SIRS model 

4. Runge-Kutta Fourth Order (RK4) 

Runge-Kutta 4th order (RK4), a popular numerical method, is an explicit method that is used 

to numerically solve the initial-value problems of first-order ordinary differential equations 

S(t) I(t) R(t) 
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(ODE) (Akinsola 2023). A differential equation of the form in Eq. (4) is an example of a first-

order ODE that can be solved using the RK4 formula shown in Eq. (5). 

 

( , )
dy

f x y
dx

= , 0 0( )y x y= ,             (4) 

 

( )1 1 2 3 42 2
6

n n

h
y y k k k k+ = + + + +                                                (5) 

 

where 0, 1, 2,. . .n = , h is the step size, 0 0( )y x y=  denotes the initial condition and ik  are 

intermediate slopes and they are defined as: 

 

1 ( , ),i ik f t y=  

1
2 ,

2 2
i i

hkh
k f t y

 
= + + 

 
 

2
3 ,

2 2
i i

hkh
k f t y

 
= + + 

 
 

( )4 3, .i ik f t h y hk= + +  

 

By modifying the first order ODE  in Eq. (4) to accommodate system of ODE we have:  

( , , I, R)s

dS
f t S

dt
= ( , , I,R)I

dI
f t S

dt
= ( , , I,R)R

dR
f t S

dt
= ,

p
iK  for , ,P S I R=  and 1,2,3,4i =  

 

where S  denotes susceptible population, I  denotes infected population and R  denotes as 

removal class. Taking 1h =   as the step size and 0, 1, 2n = . We transformed the RK4 in term 

of SIRS compartmental model as: 

For the susceptible population we have:  

 

( )1 1 2 3 42 2 .
6

s s s s
n n

h
S S k k k k+ = + + + +                                                (6)  

 

where 
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For infected population we have; 

 

( )1 1 2 3 42 2 .
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For the recovered population we have: 

 

( )1 1 2 3 42 2 .
6

R R R R
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h
R R k k k k+ = + + + +                                             (8) 
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where,  
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Hence, with known values of 0(0) SS = , 0(0)I I= and 0(0)R R=  we obtain the numerical 

solution of ( )S t , ( )I t   and ( )R t  for t = 1 day and t = 2 day can be obtained using Eqs. (4)-(6).  

However, the choice of time step size  h  is one of the factors that influences the quality of the 

solution using the Runge-Kutta method; it also has a significant impact on the accuracy of the 

numerical integration. It had been established that a smaller time step size provided a more 

accurate approximation of the solution at the expense of more computational time. The 

calculation of the value of  ik  involves computation sub-step size within the original step 

size. ik  represents how the function changes at different points within the time step. This is 

one of the factors that makes the Runge-Kutta method stand out among non-multistep 

methods, as small step sizes mean smaller sub-step sizes, leading to a more accurate result. 

5. 3-step Predictor-Corrector Method 

This study utilises the 3-step Adams-Bashforth method as a predictor and Adams-Moulton 3-

step method as a corrector to solve the SIRS model. Both the 3-step Adams-Bashforth method 

and the Adams-Moulton 3-step method are multistep method numerical method. 3-step 

predictor-corrector method, is a mixture of both explicit and implicit methods, which is 

responsible for its stability and accuracy. The explicit section is used to find the next solution, 

while in the implicit section, the trend is repeated until the required accuracy is reached.  

Since only one initial value is needed in the SIRS model, the RK4 method is employed to find 

the second and third points. We then applied the 3-step Adams-Bashforth method and 3-step 

Adams-Moulton method.  The mathematical representation of 3-step Adams-Bashforth 

method as shown in Eq. (9) and Eq. (10). 
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• 3-step Adams-Bashforth method: 

 

 1 1 1 2 223 ( , ) 16 ( , ) 5 ( , )
12

p
n n n n n n n n

h
y y f x y f x y f x y+ − − − −= + − +  .             (9)  

 

• 3-step Adams-Moulton method: 

 

1 1 1 1 15 ( , ) 8 ( , ) ( , ) .
12

c p
n n n n n n n n

h
y y f x y f x y f x y+ + + − −

 = + + −                  (10) 

 

We transform Eq. (9) and Eq. (10) to suit our SIRS model, as shown in Eqs. (11)–(13). 

However 
1

p

ny +
 is replaced by 

1 1 1, and p p p

n n nS I R+ + +
. While  

1

c

ny +
 is replace by 

1 1 1, and c c c

n n nS I R+ + +
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h
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          (11)       
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 (13) 

 

The corresponding 3-step Adams-Moulton method (corrector) are modified as shown in 

Eqs. (14)-(16). 
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Therefore, the numerical solution of S , I and R , are 1
c
nS + , 1

c
nI + and 1

c
nR + respectively for 

value of 3,4,5 ...n =   solving the differential equations numerically involves specifying the 

initial conditions for each of the variables in the compartments. An appropriate time step is 

chosen to control how updates should be done in each iteration, and the values of are updated 

as the time increases to the desired number of years. 

6. Data Source, System and Software Requirement 

The extracted data is from December 1, 2020, until January, 2021. The data is made 

cumulative to compare with the numerical results. We examined the infection of COVID-19 

using our proposed model for long-term predictions in instances where there are limited 

medical resources and chances of reinfection (SIRS model). Real COVID-19 data released by 

the Ministry of Health Malaysia (MOH) that include demographic data (location, age, and 

gender, nature of contact between individuals in the community). Other relevant features used  

in the model were adopted from Salman et al. (2021). The parameter values and initial 

conditions provided in Salman et al. (2021) were equally adopted. The daily number of active 

cases and removed cases provided by the Ministry of Health (MOH) is extracted from Dong 

et al. (2020). We equally adopted similar parameterization of the COVID-19 active cases data 

from Malaysia. Even though we opted for value of 0 =  which indicate the absence of 

medical facilities or efficiency , we intentionally neglect the effect of medical intervention 

such as vaccination and stick to non-medical practices like isolation, quarantine, social 

distancing, and other means that could lower the transmission rate of  COVID-19 among 

people without including the purchase of any materials. The parameterization employed 

provided us with credible components of the model, such as transmission rate, recovery rate, 

mortality rate, as well as the incubation period of COVID-19, while the data has its cradle 

from the Ministry of Health Malaysia.   

To effectively implement our model, we deployed the use of the MATLAB programming 

language to reduce the computational burden. MATLAB was chosen as an appropriate 

programming language in our studies because it came with a wide range of scientific libraries 

and tools for data analysis and effective stimulation; we utilised the 2022a version. It was 
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deployed mainly to ease the computational burden for better accuracy as well as result 

analysis. We exploited its various built-in functions and commands in the coding 

development phase and utilized it in the code development of RK4, the 3-step Adams-

Bashforth method, and the 3-step Adams-Moulton method to solve the SIRS model, and we 

equally used Microsoft Excel to visualize the numerical results and make comparisons with 

the actual data. 

7. Flowchart of The Proposed Hybrid Model and Its Description 

Figure 2 shows the flowchart outlining the step-by-step process of the proposed hybrid model,  

illustrating the sequence of methods applied and the conncetion between the Runge-Kutta and 

Adams-Bashforth-Moulton methods in forecasting COVID-19 transmission rates. 

 

• Step 1: We define the compartmental model by identifying the type of compartments that 

suits the problem we want to model. This is followed by the description of a differential 

equations that can capture the exchange of entities between the compartments using the 

model dynamics. With all the equations that made up our compartmental model and 

availability of the parameters needed as stated in Table 1.    

• Step 2: We implement the RK4 method. It begins by setting initial conditions for each of 

the compartments, which include the number of susceptible, infected, and recovered 

individuals at initial time (to). The compartmental model is presented as a system of first-

order ordinary differential equations (ODEs). 

• Step 3: The implementation of the RK4 method is basically to numerically solve the ODE 

system. This involves dividing the time interval into discrete steps using the ik ( 1,2,3,4)i =  

and iteratively updating the compartment values using intermediate calculations. The 

specification of time span and step size is also done here. We initialize arrays or data 

structures to store the compartment values at each time step. Iterate over the time steps, 

using the RK4 method to update the compartment values at each step. The compartment 

values at each time step are stored for further utilisation, after obtaining the first three 

solutions from RK4, which is 
1 2 3, andS S S ,

1 2 3, andI I I  and 
1 2 3, andR R R  for susceptible, 

infected and removed respectively, while 
1S ,

1I  and
1R are set as initial condition to match 

the indexing format in MATLAB. 

• Step 4: We initialise Adams-Bashforth predictor-corrector method with the values 

obtained from the RK4 solutions. The 3-step Adams-Bashforth predictor-corrector method 

is deployed mainly to further refine the solutions, being an implicit method, it can lead to 

an increase in stability and improve accuracy. Specifications of the time span and step size 

are set for the stimulation. The time span begins with 4, taking into cognizance that the 

few solutions have been obtained using the RK4 method, and we initialise arrays to store 

the compartment values at each time step. 

• Step 5: We iterate over the time steps through the 3-step Adams-Bashforth predictor-

corrector method. Using 3- step Adams-Bashforth predictor to predict the solution and 3-

step Adams-Morton corrector for possible refinement, we update the compartment values 

at each time step based on the refined predictions. 

• Step 6: The iteration is terminated on reaching the desired time span, and the graphs of the 

solutions are plotted based on the results obtained in the step 5 above, We then analysed 

the results of the hybrid model while comparing the results of the model with the real data 

of COVID-19 within the stipulated time frame. 
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Figure 2: Flowchart showing the proposed method 

 

However,  the hybrid of RK4 and 3-step ABM predictor-corrector method can be deployed 

to predict the COVID-19 transmission at each time step by expressing each of the 

compartmental equations as a scheme  that can be solved iteratively, thus Eq. (10) can be used 

as corresponding schemes for the susceptible, infected, and removed classes. Once the 

solution at the time ( 1)t − is known, we can easily compute the solution at the time (t) and 

beyond.  The hybrid model benefits from the RK4 method’s explicit nature and high-order 

accuracy, which makes it efficient and accurate for most situations but suffers when the 

system exhibits stiff behaviour. ABM is used as a stabiliser of the solution during stiff phases, 
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as it can handle stiff ODEs more effectively than RK4. This will leverage their respective 

strengths by improving accuracy, adapting to the dynamical nature of compartmental models, 

and reducing computational overhead. Having a previous solution, the present solution can be 

obtained, which can be used to generate future solutions that represent a trend in the dataset. 

8. Result and Discussion 

Parameterization of the COVID-19 active cases daily data from Malaysia from December 1, 

2020 to January 31, 2021 shown in Table 1, was extracted from (Salman et al. 2021). 

Table 1: Parameters used in the simulation 

Description Parameters Value 

Half- saturated constant    3.0173 

Medical resources per unit time    0 

Reinfection rate   0.00032422 

Recovery rate    0.026 

Transmission rate   0.11 

Death rate   0.00002 

Birth rate   0.000006 

Total population  N  185975 

Susceptible Population  (0)S  119,169 

Infected population  (0)I  10,495 

Removal population  (0)R  56,311 

 

Information presented in Table 1 was utilised in order to investigate and predict the 

transmission rate of COVID-19 in Malaysia within the specified period of days. The 

parameter values were utilized in our proposed hybrid for the period of 2000 days since we 

target long-term predictions in instances where there are limited supplies of medical resources 

such as vaccines, drugs, hospital beds, ventilators, testing kits, and other advanced medical 

equipment. The research strictly focused on transmission based on non-medical practises like 

quarantine, isolation, social distance, and other non-medical practices that can retard the 

spread of diseases among the populace. The model was used to find the solutions  of ( )S t , 

( )I t and ( )R t   for  everyday in the interval of 2000 days, and the results were presented in the 

graph  below  and compare with the actual infection rate as shown in Figure 3.  

Figure 3 illustrates the predicted dynamics of COVID-19 transmission using the hybrid of 

RK4 and 3-step ABM predictor- corrector method in a compartmental model (SIRS) which 

accounts for susceptible individuals (S), infected individuals (I), and recovered individuals 

(R) over time (in days). The graph compares predicted results with actual COVID-19 cases 

which are concentrated on the left side of the graph, justifying that the actual data covers a 

limited period (around the first 50 days), it shows a sharp increase initially before stabilizing.  

Recovery curve exhibits a sharp increase initially, peaking near 16,000 cases, it then 

decline gradually. After a significant decrease, it rises again around day 1,400, indicating a 

possible resurgence of recoveries due to reinfection or second waves of the pandemic. 

Infected population curve starts with a sharp rise, reaching a peak early in the pandemic, it 

then  declines steadily and flattens out after around day 1,000, indicating a decrease in active 

infections. However, there are small subsequent peaks, possibly indicating intermittent surges 

or secondary waves of infections. This finding aligns with some experts findings and 

suggestions that new waves of infection may rise gradually and may be brought on by 

declining immunity (Kissler  et al. 2020). Moreover, the number of COVID-19 infected cases 
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increases less steeply in future waves of outbreaks. Hence, despite the possibility of 

reinfection, this provides reassurance that our healthcare systems will not be overburdened in 

the future as they have in the past. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 3: Numerical results of the SIRS model compares with the active cases in Malaysia 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

Figure 4: Results obtain for comparison with the active cases in Malaysia (Salman et al. 2021) 

Figure 4 shows the results of the comparison of the active case and the SIR model used in 

(Salman et al. 2021). It can be seen that the result in Figure 3 differs slightly from the result in 

Figure 4, even though both models share much resemblance as both were able to capture the 

vital trend in the real data. The decrepancy in the result can be attributed to the difference in 

numerical methods used in obtaining the solution to the compartmental model that models the 

SIR. 

The output from our hybrid model closely aligns with the results from the ode45 

simulation. This strong resemblance suggests that our hybrid model successfully captures the 

key trends in real-world data. Both Figure 3 and Figure 5 display similar behavior, as each 

model effectively tracks the important dynamics observed in the real-world data. There are no 

obvious discrepancies between the results obtained using our hybrid model and the ode45 

simulation in solving the underlying compartmental SIR model. 
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Figure 5: The numerical simulation results of our SIR model using the ode45 solver 

 

 

 

 

 

 

 

 

Figure 6: Actual infected cases in Malaysia and the prediction of the SIRS model generated by the 3-step ABM 

predictor-corrector method in the interval between December 1, 2020 till October 31, 2022 

 

Figure 7: Actual removed cases in Malaysia and the prediction of the SIRS model generated by the 3-step 

predictor-corrector method in the interval between December 1, 2020 till October 31, 2022 
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Figures 6 and 7 demonstrate the dynamic of the real data and the predicted value for the 

infected population and recovery population, respectively. The real data peaked at various 

instances within the interval of interest but never returned to zero, and the predicted number 

of infected individuals is much smoother and lower than the actual data. The model predicts 

an initial rise in infections followed by a steady decline, with no major resurgence. We 

observe a significant difference between the SIRS model's predictions and the actual data for 

infected and removed cases in Malaysia. In other words, the model underestimates the 

infection peaks observed in the real data, indicating that it does not capture the intensity or 

frequency of the actual waves observed during the pandemic. This is because the SIRS model 

considered in this context incorporates a constant transmission rate, a constant recovery rate, 

and a relatively low reinfection force. Additionally, the model relies on the assumption of no 

medical resources, which means it doesn't account for factors like medical interventions or 

resources to mitigate the spread of the disease. Medical intervention, among many other 

factors, can make the model's predictions less plausible when compared to the actual data. 

The parameter values used in the SIRS model may not accurately reflect the specific 

circumstances of the COVID-19 outbreak in Malaysia. 

We consider this hybrid a successful one because the hybrid model has proven to be 

efficient. It achieves this by capturing intelligent trends present in the data. In other words, the 

model is able to discern patterns, correlations, and significant features in the data that 

contribute to a better understanding of the phenomenon being studied. It also demonstrates the 

influence or impact of medical resources in retarding the spread of the COVID-19 disease. 

This suggests that the model can incorporate variables related to medical interventions, 

resources, or healthcare systems and evaluate their effectiveness in mitigating the spread of 

the disease. In a similar light, the model may be modified to offer better predictions that are 

more precise or realistic by incorporating the effectiveness of a treatment, immunisation rates, 

hospital capacity, and other pertinent variables that can influence the dynamics of the disease 

as medical variables. Furthermore, the quality of the data used to calibrate the model and 

estimate the parameter values plays a crucial role in the precision of the model's predictions. 

This suggests that if there are improvements in health screening or increased testing capacity, 

more active cases (including asymptomatic cases) will be reported, and effective strategies 

will be adopted to curb the situation and hinder the spread of the diseases among the 

susceptible population. 

9. Conclusion  

We utilised the SIRS model to analyse COVID-19 transmission dynamics in Malaysia. The 

SIRS model was solved using a hybrid model that combines the Runge-Kutta 4th order (RK4) 

method with the 3-step Adams-Bashforth-Moulton predictor-corrector technique. Simulations 

were carried out in MATLAB. Our findings suggest a fading chance of a resurgence of 

COVID-19 cases with diminishing immunity and a relatively low reinfection rate. The 

research shows that while the initial outbreak causes a large spike in infected cases, 

subsequent waves may occur as immunity wanes. This emphasises the importance of ongoing 

public health measures to manage the disease. However, our model’s projections did not 

perfectly match Malaysia's daily active and recovered cases, likely due to improved medical 

facilities in the country. Factors, including the availability of advanced medical facilities, 

which were not fully accounted for in the model, can significantly affect the accuracy of 

pandemic transmission forecasts. In addition, we found that, in spite of using the same 

parameter values, our forecast of the COVID-19 transmission tendency differs slightly from 

the SIR model used by Salman et al. (2021). This can be a result of differences in the 
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numerical techniques employed to conduct the research. By contrasting the anticipated and 

actual cases of infection and removal in the period from December 1, 2020, to October 31, 

2022, it follows the same trend as most research conducted in the area. Epidemiological 

concepts such as false detection, face masks, and social distancing were classified as non-

medical parameters to forecast the pandemic transmission dynamics since the research was 

conducted to visualise the depth of the impact of the transmission rate when there are no or 

limited medical facilities. Although this research can also be used to describe the impact of 

medical facilities in retarding the transmission of infectious diseases by observing the relation 

between affinity and difference when there are medical facilities and when we do not have 

such facilities or their availability is limited. In the future, we want to integrate this model into 

neural networks to solve constraint optimisation problems.  
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