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ABSTRACT  

In 2021, Malaysia experienced a 25% increase in fine particulate matter (PM2.5) concentrations 

compared to 2020. During this period, Petaling Jaya was recognised as one of the most polluted 

cities in the country. The study intended to investigate the dynamics of daily average 

concentrations of particulate matter smaller than 2.5 micrometres (PM2.5) and other air 

pollutants with notable significant levels in 2021 in Petaling Jaya, Malaysia, for the year 2021 

relative to the levels in 2020. To achieve this, an autoregressive distributed lag (ARDL) model 

was employed. Results from the paired sample t-test indicated sulphur dioxide (SO2) as having 

significantly higher concentrations in 2021 compared to 2020. The ARDL bound test established 

a long-term association between SO2 and PM2.5. The Augmented Dickey (ADF) unit root test 

supported the suitability of the ARDL model by demonstrating variable integration at different 

levels. The ARDL model analysis revealed that SO2 had a significant long-term negative impact 

on PM2.5, while exhibiting a significant effect in the short term. An adjustment speed of 34% 

indicated that the system could rectify approximately one-third of any deviation from the long-

term equilibrium between SO2 and PM2.5, one day following a disturbance. Various reasons 

could be cited for the discrepancies in model performance across different time frames and 

pollutants, such as seasonal fluctuations, changes in human activities, adjustments to 

regulations, and external influences. This study provides crucial insights into the dynamic 

interactions between air pollutants and contributes to more effective air quality management 

strategies. 
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ABSTRAK  

Pada tahun 2021, Malaysia mengalami peningkatan sebanyak 25% pada kepekatan partikel 

terampai halus (PM2.5) berbanding tahun 2020. Pada waktu tersebut, Petaling Jaya dikenalpasti 

sebagai salah satu bandar paling tercemar dalam negara. Kajian ini bertujuan untuk menyiasat 

dinamik kepekatan purata harian partikel terampai bersaiz kurang daripada 2.5 micrometer 

(PM2.5) dan pencemar udara lain yang mempunyai aras yang ketara pada tahun 2021 di Petaling 

Jaya, Malaysia, untuk tahun 2021 relatif kepada aras pada tahun 2020. Untuk tujuan ini, model 

autoregresif lat tertabur (ARDL) telah digunakan. Hasil daripada ujian-t sampel berpasangan 

menunjukkan yang sulfur dioksida (SO2) mempunyai kepekatan tinggi yang signifikan pada 

tahun 2021 berbanding tahun 2020. Ujian terikat ARDL memantapkan perkaitan jangka masa 

panjang antara SO2 dan PM2.5. Ujian Augmented Dickey (ADF) menyokong kesesuaian model 

ARDL dengan menunjukkan integrasi pembolehubah pada pelbagai aras. Analisis model ARDL 

menunjukkan SO2 mempunyai impak negatif jangka masa panjang yang signifikan kepada 

PM2.5, sambil mempamerkan kesan signifikan dalam jangka masa pendek. Pelarasan kepantasan 

pada 34% menunjukkan bahawa sistem ini mampu membetulkan lebih kurang satu pertiga 

daripada sebarang penyimpangan daripada keseimbangan jangka masa panjang diantara SO2 

and PM2.5, sehari selepas gangguan. Pelbagai punca boleh dipetik berkenaan percanggahan pada 

prestasi model merentasi pelbagai jangka masa dan pencemar, contohnya turun-naik musiman, 

perubahan aktiviti manusia, pelarasan peraturan, dan pengaruh luar. Kajian ini memberi 
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pandangan penting kepada interaksi dinamik antara pencemar udara dan menyumbang kepada 

pengurusan strategi kualiti udara yang lebih efektif. 

Keywords: PM2.5; Petaling Jaya; ujian-t sampel berpasangan; model autoregresif lat tertabur   

 

1. Introduction   

Particle air pollution, which is widely known as particulate matter pollution (PM), is a critical 

global health issue, causing an estimated four million deaths annually (Thangavel et al. 2022). 

Fine particulate matter (PM2.5), with its ability to penetrate deep into the respiratory system and 

bloodstream, poses severe health risks, including respiratory and cardiovascular diseases, and 

cancer (World Health Organisation 2021). In urban settings, vehicular and industrial emissions 

are major sources of PM2.5, and their impact on air quality and public health is exacerbated 

under certain conditions such as the COVID-19 pandemic. Studies, including those conducted 

during the lockdown phases of the pandemic, have observed significant variations in air 

pollutant levels, thereby demonstrating the influence of human activity on air quality (Abdullah 

et al. 2020; Zulkarnain et al. 2023). 

Fine particulate matter (PM2.5) is one of six air pollutants recorded by the Department of 

Environment of Malaysia (DOE). It is widely regarded as the most detrimental to both the 

environment and human health because of its widespread presence and extensive range of 

health effects (Darunikorn et al. 2023). Exposure to PM2.5, which presents a substantial health 

threat, with outdoor PM2.5 emerging as the most critical environmental determinant of mortality 

in the area, linked to 130,000–320,000 additional deaths in ASEAN countries in 2019 (Ravi et 

al. 2022). Studies in the Asia-Pacific region have repeatedly demonstrated connections between 

extended exposure to PM2.5, heightened all-cause mortality, cardiovascular disease, type 2 

diabetes mellitus, kidney disease, and chronic obstructive pulmonary disease (Nguyen et al. 

2022). 

The significant population growth and corresponding economic development have been 

major contributors to the rising levels of air pollution in Southeast Asia. Fossil fuels, 

particularly oil and coal, are the primary sources of fuel in the power sector, and the demand 

for electricity is increasing at a rate of approximately 6% per year. The combustion of these 

fuels is a significant contributor to PM2.5. Other sources of PM2.5 emissions in urban areas 

include construction, industrial activities, and transportation. In rural areas, open burning 

practices used for farmland management and forest clearing also contribute to PM2.5 emissions 

(IQAir 2022).   

Several studies have pointed out various sources of PM2.5. These sources include natural 

sources, such as biomass burning, which makes a significant contribution during the 

southwestern monsoon season owing to Indonesian peatland fires (Dahari et al. 2019; Suradi et 

al. 2021). Additionally, urban traffic combustion, industrial activities, and motor vehicles have 

been identified as primary sources of PM2.5 in urban areas such as Kuala Lumpur, contributing 

to particulate air pollution (Chow et al. 2019; Rahman et al. 2015). Long-range transportation 

of PM2.5, which impacts pollution levels in areas such as Skudai, Johor Bahru, has also been 

observed in regions such as Sumatera, Indonesia, and China during different monsoon seasons 

(Fujii et al.2015).  

Petaling Jaya, located in Kuala Lumpur, the capital city of Malaysia, is facing substantial 

air pollution challenges. Despite the existence of industrial operations and open burning, the 

automotive industry has emerged as the main contributor to hazardous emissions in the region  

(Ganeshwaari & Koshy 2022). A study by Amil et al. (2016) revealed the significant impact of 



 

Urban PM2.5 Pollution Dynamics in Petaling Jaya, Malaysia: A Temporal Approach 
  

51 

fine particulate matter PM2.5 in the air of Petaling Jaya's urban-industrial district in the Klang 

Valley. The average mass concentration of PM2.5 was 28±18 μg3, approximately threefold the 

annual guidelines of the World Health Organization (WHO). 

Many academic studies have focused on Petaling Jaya's urban environment, its population 

density, and air pollution. Shafie et al. (2022) employed geographic methodologies to analyze 

the distribution and impacts of air pollutants, aiming to understand effects of urban air pollution 

on Klang Valley residents. Amir (2007) provided a historical analysis of air pollution trends in 

Petaling Jaya, offering insights into the changing urban air quality. Moreover, Hadipour et al. 

(2009) highlighted the critical role of integrated urban environmental planning by developing 

mathematical models to evaluate the environmental impacts of transportation-related air 

pollution in Petaling Jaya. These investigations highlight the significant consequences of 

urbanisation and air pollution on the health of the population and Petaling Jaya's environmental 

integrity. 

This study addresses the gap in understanding the dynamics of PM2.5 concentrations and 

their association with other air pollutants demonstrated highly significant concentrations 

indentified by the application of paired-sample t-test in 2021. The Autoregressive Distributed 

Lag (ARDL) model was employed to investigate the short-term and long-term effects of air 

pollutants utilised by the Department of Environment, Malaysia, which exhibited a significant 

increase in 2021 compared with 2020 on PM2.5, in Petaling Jaya, Malaysia. This study 

contributes to the empirical body of knowledge on air pollution dynamics. This study provides 

actionable insights for policymakers and environmental authorities to mitigate air quality 

issues. 

The paper is organized as follows: following the introduction, the definition of fine 

particulate matter (PM2.5) is provided, along with an overview of some existing studies on its 

health effects and source emissions. The materials and methods section discusses the study area 

and dataset collection and treatment. This is followed by a description of the methodology, 

which outlines the analytical methods and statistical techniques employed in the study. The 

empirical results section presents the findings from the applied techniques and model analysis, 

including the effects of various pollutants on PM2.5 levels. The discussion section interprets 

these results in the context of existing literature and policy implications. Finally, the conclusion 

summarizes the key findings of the research. 

2. Materials 

2.1. Study area  

This study's research area, Petaling Jaya which is located in the Klang Valley with the 

coordinate of 3o 08’N latitude and 101o 44’E longitude, is the primary city in the Selangor Darul 

Ehsan state and is situated in the Petaling District. It has a total area of 97.2 km² and is overseen 

by the Petaling Jaya City Council (PJCC), which serves as the local governing body. The 

selection of Petaling Jaya as the focus of this study was influenced by its inclusion by IQAir 

(2022), who identified it as having high levels of PM2.5, following the Klang Valley region who 

identified it as having high PM2.5 concentrations after the Klang Valley region. As of July 2022, 

Petaling Jaya had a population of over 619,925 people and 278,800 properties, and it currently 

stands as the most significant growth centre in Selangor (Rosli et al. 2023). 

2.2. Datasets collection and treatment  

Air quality datasets for Petaling Jaya continuous air quality stations were collected from the Air 

Quality Division of the Department of Environment of Malaysia (DOE). Daily average 
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concentration datasets consisted of air pollutants: PM2.5 (μg/m3), SO2 (ppm), NO2 (ppm), CO 

(ppm), and O3 (ppm) over a period of two years in 2020 and 2021. 

The total number of data points utilised in this analysis for 2020 was 1830 (5 variables × 

366 days). Similarly, the total number of data points for 2021 was 1825 (five variables × 365 

days). From the overall dataset, the total number of missing data points was approximately 6%. 

To address the issue of unavailable or missing data, the k-nearest neighbour algorithm (KNN) 

was implemented, and computations were carried out using the XLSTAT add-in software. This 

method has been widely applied in air pollution studies (Azid et al. 2013; 2014; Islam et al. 

2022). 

3. Methodology 

3.1. Paired sample t-test  

A paired sample t-test analysis was employed to evaluate the average of two variables within a 

group. This technique is beneficial for examining and comparing the average of the samples 

both before and after treatment or for a specific period of time, this test is the most suitable for 

use in circumstances where the underlying distribution is normal and the sample sizes are 

substantial for any distribution (Imam et al. 2014). To determine a sufficiently large t count 

before and after treatment, the following equation was used: 

 

𝑡 =  
∑ 𝑑

√𝑛 (∑ 𝑑2) − (∑ 𝑑)2

𝑛 − 1

 

 

Whereas: 

𝑑 = mean difference per paired value  

𝑛 = number of samples 

  
To conduct a paired-sample t-test, the following assumptions must be met: 

(1) The differences between the values obtained at two different times must be normally 

distributed. 

(2) Values were sampled independently. 

(3) Values were measured on an interval or ratio scale. 

(4) The data consisted of related pairs of values from two different times, with each 

measurement at one time paired with the corresponding measurement at the other time. 

 

For the paired sample t-test, the degrees of freedom were n-1. If the calculated t-value is less 

than the t-table, the null hypothesis H0, which states that no significant difference was observed, 

is rejected, and the alternative hypothesis H1, which states that there is a significant difference 

between the two groups, is accepted. Conversely, if the calculated t-value is greater than the t-

table, the null hypothesis is accepted and the alternative hypothesis is rejected. 

The daily average PM2.5 concentrations from 2020 and 2021 were compared using a paired 

sample t-test. The null hypothesis (H0, the mean difference between the 2021 and 2020 paired 

daily PM2.5 levels is zero) and the alternative hypothesis (H1, the true mean difference between 

the 2021 and 2020 daily PM2.5 levels deviates from zero, which indicates an increase) were 

explored using the paired sample t-test. Case–control studies or repeated measures studies 

frequently used the paired sample t-test. This test was also used for the variable selection 

criteria. Variables with significantly increased mean levels in 2021 compared to 2020 were 
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considered for the analysis. This approach ensured that the mean levels of the included variables 

were characterised by a meaningful and statistically supported increase. This approach 

enhanced the relevance of the analysis in identifying temporal trends and changes in PM2.5. 

Subsequently, a descriptive statistical analysis was performed on the obtained higher 

significant air pollutants for 2021, including the mean, median, first quartile, third quartile, 

maximum, minimum, and standard deviation. These calculations were performed to investigate 

the distributions of the obtained variables. The Pearson correlation coefficient was used to 

evaluate the linear relationship between significant variables. 

3.2 . Augmented Dickey-Fuller (ADF) unit root test  

In the field of time series analysis, it is widely known that nonstationary data series may lead 

to spurious regression. Therefore, testing for stationarity is an essential step in both forecasting 

and dynamic modeling (Özcan & Öztürk 2019). This is important to ensure that the results of 

the analysis are valid and accurate. Additionally, autoregressive distributed lag (ARDL) 

estimation is required to test for unit root to ensure that all variables satisfy the underlying 

assumptions that data series are integrated at different levels. Therefore, time-series properties 

of the variables were tested with the application of Augmented Dickey-Fuller (ADF) 

3.3. Dynamic Autoregressive Distributed Lags (ARDL) approach  

This research aimed to investigate the dynamic relationship between daily average PM2.5 

concentrations, and any of the air pollutants sulphur dioxide (SO2), nitrogen dioxide (NO2), 

carbon monoxide (CO), or ground level ozone (O3), which displayed higher daily average 

concentrations in 2021 than in 2020, using the paired sample t-test. The model is specified in 

the functional form as follows: 

 

𝑃𝑀2.5 = 𝑓 (𝑆𝑂2, 𝑁𝑂2, 𝐶𝑂, 𝑂3)                                                                                                    (1) 

 

This can be expressed in econometric form as: 

 

𝑃𝑀2.5,𝑡 =  𝛽0 + 𝛽1𝑆𝑂2,𝑡 + 𝛽2𝑁𝑂2,𝑡 + 𝛽3𝐶𝑂𝑡 + 𝛽4𝑂3,𝑡 + 𝜀𝑡                                                    (2) 

     

The model below has been designed to convert all variables in Eq. (2) into their log form: 

 

log 𝑃𝑀2.5,𝑡 =  𝛽0 + 𝛽1 log 𝑆𝑂2,𝑡 + 𝛽2 log 𝑁𝑂2,𝑡 + 𝛽3 log 𝐶𝑂𝑡 + 𝛽4log𝑂3,𝑡 + 𝜀𝑡           (3)   

                                     

where 𝑙𝑜𝑔𝑃𝑀2.5 ,𝑡 represents the daily average of 𝑃𝑀2.5  concentrations, t represents the time 

period from January 1, 2021 to December 31, 2021. 𝛽0 represents the constant (intercept) while 

𝛽1 to 𝛽4 are the coefficients of regressors, while 𝜀𝑡  represents the error term or the white noise.  

The long-term associations known as cointegration among the variables of interest were 

empirically examined using the ARDL bound test approach (Pesaran et al. 2001). This method 

was selected as the bounds test procedure that possesses several advantages over the traditional 

cointegration methods (Ali et al. 2021). Furthermore, this approach enables the estimation of 

the cointegration relationship using ordinary least squares (OLS) to identify the appropriate 

model lag order. Other multivariate cointegration approaches, such as that of Johansen-Juselius 

(1990), involve variable pre-testing for unit roots. In contrast, bounds testing does not require 

pre-testing of the unit root model variables. The test is valid irrespective of whether the 

underlying regressors in the model are purely I(0) or I(1) (Özcan & Öztürk 2019). Third, the 
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test was comparatively more efficient with finite or small sample sizes, such as the sample size 

used in this study. Nevertheless, the test may fail in the presence of the I(2) series (Chandio et 

al. 2019). Eq. (3) can be written in ARDL form as follows: 

 

∆ 𝑙𝑜𝑔 𝑃𝑀2.5,𝑡 = 𝛼0 + 𝛼1∆ 𝑙𝑜𝑔 𝑃𝑀2.5,𝑡−1 + 𝛼2 ∆𝑙𝑜𝑔𝑆𝑂2,𝑡−1 + 𝛼3∆ 𝑙𝑜𝑔 𝑁𝑂2,𝑡

+ 𝛼4∆ 𝑙𝑜𝑔 𝐶𝑂𝑡 + 𝛼5∆𝑙𝑜𝑔𝑂3,𝑡 + ∑ 𝛾1𝑖∆𝑙𝑜𝑔𝑃𝑀2.5,𝑡−𝑖

𝑞

𝑖=1

+ ∑ 𝛾2𝑖∆𝑙𝑜𝑔𝑆𝑂2,𝑡−𝑖

𝑝

𝑖=0

+ ∑ 𝛾3𝑖∆𝑙𝑜𝑔𝑁𝑂2,𝑡−𝑖

𝑝

𝑖=0

+ ∑ 𝛾4𝑖∆𝑙𝑜𝑔𝐶𝑂2,𝑡−𝑖

𝑝

𝑖=0

+ ∑ 𝛾5𝑖∆𝑙𝑜𝑔𝑂3,𝑡−𝑖

𝑝

𝑖=0

+ 𝜀𝑡  

(4) 

 

where Δ is the first difference function. p and q represents the obtained optimal lag. The long-

term dynamics are characterized by 𝛼1 , 𝛼2 , 𝛼3   and 4   while the short-term dynamics are 

represented by 𝛾1  𝛾2  𝛾3  𝛾4  and 𝛾5. and q and p are the lag periods.  Furthermore, the joint 

significance of the lagged variable coefficient was assessed using the F-test to confirm a long-

term relationship between PM2.5 and the obtained significant air pollutants. H0 suggests the 

absence of a long-term relationship between PM2.5 and any significant air pollutants, and 

assumes that the coefficients have identical values. Thus, H0: γ1=γ2= γ3= γ4= γ5 was assessed 

according to Pesaran et al.(2001). An F-test value exceeding the upper critical bound does not 

support H0 and the variables exhibit cointegration. Conversely, an F-test value below the lower 

critical bound supports H0, and indicates no variable cointegration. An inconclusive result was 

obtained when the F-test value was between the upper and lower critical bounds. The error 

correction model can be estimated according to the following formula in Eq. (5): 

 

∆ 𝑙𝑜𝑔 𝑃𝑀2.5,𝑡 = 𝛼0 + ∑ 𝛾1𝑖∆𝑙𝑜𝑔𝑃𝑀2.5,𝑡−𝑖

𝑞

𝑖=1

+ ∑ 𝛾2𝑖∆𝑙𝑜𝑔𝑆𝑂2,𝑡−𝑖

𝑝

𝑖=0

+ ∑ 𝛾3𝑖∆𝑙𝑜𝑔𝑁𝑂2,𝑡−𝑖

𝑝

𝑖=0

+ ∑ 𝛾4𝑖∆𝑙𝑜𝑔𝐶𝑂2,𝑡−𝑖

𝑝

𝑖=0

+ ∑ 𝛾5𝑖∆𝑙𝑜𝑔𝑂3,𝑡−𝑖

𝑝

𝑖=0

+ 𝛿𝐸𝐶𝑇𝑡−1 + 𝜀𝑡 

(5) 

 

where 𝐸𝐶𝑇𝑡−1  represent a one lagged error correction term and 𝛿  represent the speed 

coefficient of adjustments towards long-run equilibrium, in other words, if the system is moving 

out of equilibrium in one direction then it will pull it back to equilibrium.    

The ARDL error correction term is a vital component of the model that determines the 

adjustment speed of the variables to long-term equilibrium after a shock. This term aids in the 

identification of the long-term relationship between variables and corrects for short-term 

deviations from that relationship. The term is calculated as the lagged difference coefficient of 

the dependent variable in the ARDL model, and indicates a cointegrating relationship among 

the variables. Such a relationship indicates a long-term equilibrium that is sustained even if the 

variables deviate from it in the short term. Furthermore, the term ensures appropriate model 

specification and reliably estimates the long-term relationship between the variables (Shuaibu 
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et al. 2022). A statistically significant and negative coefficient (𝐸𝐶𝑇𝑡−1) indicates that a long-

term imbalance between PM2.5 and obtained significant variables obtained by the paired sample 

t-test will converge to the association of long-term equilibrium.  To confirm the stability of the 

model, Breusch-Godfrey serial correlation LM, Heteroskedasticity by Breusch-Pagan-Godfrey, 

and Jarque–Bera normality tests along with CUSUM proposed by Brown et al. (1975) have 

been employed to conduct a comprehensive evaluation of the model's stability.  

3.4. CUSUM test  

After the long-run relationship between variables under consideration is confirmed, the research 

applies the Cumulative Sum (CUSUM) test. Earlier literature by (Pesaran et al. 2001)  proposed 

this evaluation to indicate the appropriate fit of the ARDL model. This examination involves 

plotting the residuals of the ECM. If the statistics in the plot fall within critical limits at the 5% 

significance level, it suggests that the coefficients of the ARDL model are stable. 

4. Results and Discussions 

4.1. Summary statistics   

The summary statistics (see Table 1) present an overview of the statistical distribution of PM2.5 

concentrations in 2020 and 2021. In 2020, the mean PM2.5 concentration was 19.59±6.70 μg/m3, 

which was below the Malaysian Ambient Air Quality Standards (MAAQS) that defines the 

permissible PM2.5 threshold of 35 μg/m3, this indicates the concentration was in compliance 

with regulatory limits.  

Additionally, the  first and third quartiles of PM2.5 concentrations in 2020 were 15.16 μg/m3 

and 23.26 μg/m3, respectively indicating 75% of the daily average concentrations did not exceed 

the MAAQS. The median, minimum (Min), and maximum (Max) daily PM2.5 concentrations 

in 2020 were 18.58 μg/m3, 7.60 μg/m3, and 47.74 μg/m3, respectively. The standard deviation 

(SD) of 6.67 μg/m3 indicated moderate variability. 

Table 1: Summary statistics of PM2.5 concentrations (μg/m3) in 2020–2021 

Variable Mean 
First 

quartile 
Median 

Third 

quartile 
 Max. Min. SD 

PM2.5 2020 19.59 15.16 18.58 23.26 47.74 7.60 6.70 

PM2.5 2021 24.08 18.86 23.12 28.14 55.60 6.64 7.41 

 

The mean PM2.5 concentration in 2021 was 24.08±7.41 μg/m3, which reflected an increase 

compared to 2020. The quartile, and maximum values also showed similar increasing patterns. 

The SD in 2021 was 7.41 μg/m3, which is marginally higher than that in 2020. Figure 1 depicts 

the time series graph of PM2.5 concentrations in 2020 and 2021. The PM2.5 concentrations in the 

air significantly increased in 2021. 
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Figure 1: Visual representation of PM2.5 concentrations in 2020–2021 

 

4.2. Paired sample t-test results  

Given that our dataset consists of 365 daily average concentrations for each air pollutant (PM2.5, 

SO2, NO2, and O3), and considering the Central Limit Theorem (CLT) which supports that with 

a sample size of this size, the distribution of sample means will approach normality. 

Additionally, with the justification by Kwak and Kim (2017) that the skewed population 

distribution does not influence the distribution of sample means as sample size increases. 

According to the central limit theorem, with a sufficiently large sample size, the means of 

samples will be normally distributed, thus allowing us to apply the paired sample t-test. 

Table 2 presents the results of the paired-sample t-test. The mean difference (diff) in PM2.5 

concentrations between the two years was -4.496 μg/m3, which indicated a statistically 

significant increase from 19.589 μg/m3 in 2020 to 24.085 μg/m3 in 2021 (t = -7.95, p < 0.05). 

Similarly, the paired t-test for SO2 concentration revealed a significant increase, with a mean 

difference of 0.000 (t = 9.20, p < 0.05). 

Table 2: Paired sample t-test of 2020–2021 

Variable Mean 2020 Mean 2021 diff Standard error t-value p-value 

PM2.5 2021 – PM2.5 2020 19.59 24.09 -4.50 0.57 -7.95 0.00 

SO2 2021 – SO2 2020 0.001 0.001 0.000 0.000 9.20 0.00 

NO2 2021 – NO2 2020 0.018 0.019 -0.001 0.001 -1.70 0.09 

CO 2021 – CO 2020 0.825 1.018 -0.193 0.020 -9.55 1.00 

O3 2021 – O3 2020 0.005 0.010 -0.004 0.001 -12.15 1.00 

  

NO2 exhibited insignificant results from 2020 to 2021 (mean difference = -0.001, t = -1.70, 

p > 0.05). In contrast, CO concentrations decreased significantly (mean difference = -0.193, t 

= -9.55, p > 0.05). Additionally, the O3 concentrations markedly decreased (mean difference = 

-0.004, t = -12.15, p > 0.05). These findings emphasise the significant temporal shifts in air 

quality parameters, where the 2021 PM2.5 and SO2 concentrations were notably higher in 2021. 

The daily mean PM2.5 concentration in 2021 was 24.08 ±7.41 μg/m3 (see Table 3). The 

minimum and maximum concentrations were 6.64 μg/m3 and 55.60 μg/m3, respectively. This 
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suggests that PM2.5, which exceeded the MAAQS, reached a maximum value of 55.60 μg/m3 

that exceeded the MAAQS. 

Table 3: Summary statistics of PM2.5 and SO2 daily mean levels in 2021 

Variable Mean 
First 

quartile 
Median 

Third 

quartile 
Max Min SD 

PM2.5 (μg/m3) 24.08 18.86 23.124 28.14 55.60 6.64 7.41 

SO2 (ppm) 1.176×10−3 1× 10-3 1.1×10-3 0.001 3×10-3 1× 10-3 4.5×10-4 

 

Additionally, in 2021, the daily average concentration of SO2 exhibited a maximum value 

of 3×10-3ppm. The first quartile value of 1× 10-3 ppm indicates that 25% of the days had 

relatively low SO2 levels, while the third quartile value of 1.176×10−3 ppm indicated that 75% 

of the days had SO2 levels below this threshold, highlighting a tendency towards lower 

concentrations. The standard deviation of  8.9×10−4 ppm reflects some variability in daily SO2 

levels, indicating fluctuations but not extreme differences. Overall, the data suggest that, while 

there were variations, the majority of days had relatively low SO2 concentrations. 

 

 

 
 

Figure 2: Boxplot analysis on daily average concentrations of (a) PM2.5 and (b) SO2 in Petaling Jaya station in 

Malaysia  

 

The median of 23.124 μg/m3 of PM2.5 concentration is slightly lower than the mean of 24.08 

μg/m3, which indicates a right-skewed distribution of the data, as shown in Figure 2. This 

distribution suggests that, although a majority of the observations cluster around or below the 

mean, there exists a subset of relatively higher values that disproportionately influence the 

mean, causing it to be slightly higher than the median. Practically, this discrepancy implies that 

the average PM2.5 concentration may be fairly inflated due to occasional spikes or outliers in 

pollution levels, which may have significant implications for public health and environmental 

policy.  

Similarly, in 2021, the daily average SO2 concentration exhibited a slight excess over the 

median, with values of 1.176×10−3 and 1.1×10−3 ppm, respectively. This suggested a skewed 

distribution at higher concentrations. This discrepancy implies that, while the majority of 

observations may cluster around or below the median, the presence of occasional spikes or 

outliers in SO2 levels leads to an upward shift in the mean. 
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4.3. Correlation matrix  

The correlation matrix in Table 4 demonstrates the relationship between PM2.5 and SO2 

concentrations in 2021. The correlation coefficient of -0.112 suggested a weak and statistically 

significant negative correlation between PM2.5 and SO2 at the 5% significance level. 

Table 4: Correlation matrix of PM2.5 and SO2 daily mean levels in 2021 

 PM2.5 SO2 

PM2.5 1  

SO2 -0.112* 1 

* significance at the 5% level. 

 

This result implied that the SO2 daily concentrations tended to decrease or increase as the 

daily concentrations of PM2.5, increased or decreased, respectively. The negative correlation 

suggested that PM2.5 and SO2 levels in the examined dataset were inversely associated. 

4.4. Unit root test  

Unit root test was conducted to assess the stationarity properties of the variables PM2.5 and SO2 

at the level and the first difference. The tests examined H0, assuming a unit root is present in a 

time series (the time series dataset does not exhibit stationarity), while H1 assumes that no unit 

root is observed in the tested time-series dataset. 

Table 5: Agumented Dicky-Fuller (ADF) test results 

 PM2.5 SO2 

Constant -10.5594*** -3.7373*** 

Constant and trend -7.8266*** -4.7311*** 

No constant and trend -0.6477** -1.2112 

Notes: *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively. 

 

The ADF results in Table 5 indicate that PM2.5 and SO2 are stationary at the level when 

including a constant and trend. Accordingly, the highly negative test statistics did not support 

H0 of the unit root.. The stationarity results were less conclusive without a constant trend, 

particularly for SO2. When no constant and trend were included, SO2 exhibited non-stationarity 

(p < 5% significance level). Nevertheless, SO2 demonstrated stationarity at the first difference 

with a 1% significance level. Thus, PM2.5 was I(0), while SO2 was I(1). 

4.5. Lag selection criteria  

An appropriate variable lag order is important before using the ARDL bound test to examine 

the cointegration among the investigated variables. This study selects the appropriate lag order 

using the optimal lag order of the vector autoregression (VAR) model. 

Table 6 presents the lag selection criteria based on the VAR model (VAR). According to all 

optimal lag criteria, it was determined that the criteria indicated that the model yielded better 

results at lag 2. Furthermore, a suitable lag length in the VAR methodology was confirmed 

using the inverse roots of the AR characteristics polynomial graph. In the graph, the dots in the 

unit circle confirm favourable outcomes when utilising a lag of 2 (see Figure 3). 
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Table 6 : VAR lag order selection criteria 

Lag LogL LR FPE AIC SC HQ 

0 -278.0361 NA 0.019006 1.712759 1.735939 1.722008 

1 -3.932746 543.1774 0.003643 0.060751 0.130291 0.088498 

2 10.05482 27.54737* 0.003427* -0.000335* 0.115566* 0.045911* 

3 11.54423 2.915056 0.003480 0.015020 0.177281 0.079765 

4 13.30695 3.428409 0.003528 0.028704 0.237325 0.111947 

5 16.52718 6.223818 0.003545 0.033473 0.288455 0.135215 

6 18.39826 3.593388 0.003592 0.046494 0.347836 0.166734 

7 19.17018 1.473011 0.003663 0.066237 0.413940 0.204976 

* significance at the 5% level; NA = Not Applicable. 

 

 

 

Figure 3: Inverse roots of AR characteristics polynomial graph 

4.6. ARDL bound test for cointegration 

The ARDL bound test is a new approach introduced by M.H. Pesaran and Y. Shin  (Pesaran et 

al. 2001) that is applied to detect the existence of cointegration among variables over the Engle 

and Granger (1987), and Johansen and Juselius (1990) due to its several advantages over these 

traditional cointegration tests (Ali et al. 2021), additionally due to having different integrated 

variables (Gessesse & He 2020; Madaki & Akanegbu 2023). Confirming cointegration using 

the ARDL bound test is crucial before examining the long- and short-term relationships 

between the variables. The F-statistics values surpassed the lower and upper bounds at the 1% 

significance level (see Table 7). Consequently, H1 of cointegration was supported, thus 

validating the long-term association between PM2.5, and SO2. 

Table 7: ARDL bound test for cointegration 

 F-bounds test 
Lag F-statistic p-value 

(2, 2) 24.26283 0.000 

Critical value  10% 5% 2.5% 1% 

Lower bound I(0) 2.44 3.15 3.88 4.81 

Upper bound I(1) 3.28 4.11 4.92 6.02 
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4.7. Dynamic ARDL technique analysis 

Upon confirming a long-term relationship between PM2.5 (dependent variable) and SO2 

(independent variable), the long- and short-term equations were estimated using Eqs. (2) and 

(3) and the ARDL model (Pesaran et al., 2001) (see Table 9). In the long term, SO2 has a 

significant negative effect on PM2.5. In contrast, the short-term results indicated that SO2 had a 

positive and highly significant effect on PM2.5. Thus, a 1% increase in SO2 increased the PM2.5 

by 0.28%. 

The R2 and adjusted R2 values were 30% and 29%, respectively, indicating an acceptable 

model fit. This fit could have been due to the inclusion of only SO2 as an independent variable 

as indicated by Pal and Bharati (2019) variables included in a model can impact the value of R-

squared, with a greater number of predictor variables possibly resulting in a higher R-squared 

value. The calculated F-statistic was 34.90 and highly significant at the 1% level. The results 

suggest that daily SO2 levels are a significant predictor of daily PM2.5. The error correction term 

(𝐸𝐶𝑇)𝑡−1 was statistically significant and negative at the 1% level with a reasonably moderate 

coefficient. This result indicates that disequilibrium could be adjusted to long-term equilibrium, 

with 34% reasonably moderate speed due to prior shocks in the daily SO2 levels. 

Table 9: Results of ARDL long- and short-term coefficients 

Variable Coefficient Standard error t-Statistic Probability 

Long-term estimation of parameters from ARDL models 

Log(SO2) -0.456449 0.006127 -74.49400 0.0000*** 

 

Short-term estimation of parameters from ARDL models 

Log PM2.5,t-1 -0.337108 0.048428 -6.961074 0.0000*** 

Log SO2,t-1 -0.153873 0.022279 -6.906774 0.0000*** 

∆Log PM2.5,t-1 -0.005581 0.056142 -0.099400 0.9209 

∆Log SO2 0.287034 0.058966 4.867762 0.0000*** 

∆Log SO2,t-1 0.131307 0.058971 2.226644 0.0266** 

CointEq(-1)* -0.337108 0.048321 -6.976457 0.0000*** 

     

Diagnostic tests 

R2 = 0.301881 

Adjusted R2 = 0.293521 

F-statistic = 34.89703*** 

Breusch-Godfrey serial correlation LM test 0.5833 

Heteroskedasticity test: Breusch-Pagan-Godfrey 0.8880 

Jarque–Bera normality test  0.2651 
Notes: *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively. 

 

Model stability was examined using the Breusch-Godfrey serial correlation LM, Breusch-

Pagan-Godfrey, and Jarque–Bera normality diagnostic tests. The tests yielded p-values of 

0.5833, 0.888, and 0.2651, respectively, indicating that the obtained model was appropriate and 

that the ARDL model successfully passed all the diagnostic tests. Additionally, the long- and 

short-term parameter stabilities were investigated using the CUSUMQ test (see Figure 4). 

The stability test (Figure 4) demonstrates that the plot is between the 5% significance level 

critical boundaries, which confirmed the accuracy of the parameters affecting PM2.5 

concentrations throughout 2021. 
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Figure 4: CUSUMQ squares of recursive residuals 

5. Conclusion 

This study presented convincing evidence of a significant correlation between PM2.5 and SO2 

concentrations in Petaling Jaya in 2021. The PM2.5 levels were significantly increased compared 

to those in 2020. According to the paired sample t-test, 2021 SO2 levels were higher than those 

in 2020. ARDL identified a long-term connection between SO2 and PM2.5, which highlighted 

the significant effect of SO2 on PM2.5. Empirical evidence indicates that SO2 substantially and 

persistently affects PM2.5. Additionally, SO2 significantly and positively affected daily PM2.5 

levels in the short term. Furthermore, 34% of the overall adjustment towards a new PM2.5 

equilibrium occurred during the specified period following SO2 concentration changes. The 

complex interaction between SO2 and PM2.5 highlighted the interplay and deep connections that 

require additional exploration and suggested potential contributing elements. Potential factors 

for variations in model performance across diverse pollutants and periods may encompass 

changes in human activities, seasonal variations, and regulatory changes. Future investigations 

should focus on elucidating the intricate mechanisms that underlie the interplay between these 

pollutants and identifying other factors that may affect their relationships. Gaining such 

knowledge is critical for devising comprehensive strategies for managing air quality to ensure 

the protection of both public health and the environment. 

6. Practical Implications 

Results from this study will be highly valuable to authorities and environmental administrators 

in developing location-specific interventions aimed at reducing SO2 emissions and mitigating 

PM2.5 levels. These insights can inform air quality management policies, to implement stricter 

emission standards for industries and promoting clean energy sources. Such measures would 

effectively reduce the impacts of SO2 and PM2.5, thereby improving overall air quality. 
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