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ABSTRACT  

This work investigates and identifies suitable dimensionality reduction approaches based on 

variants of principal component analysis (PCA) for various transformations of stock price data. 

The classical PCA, dynamic principal component analysis (DPCA) and generalised dynamic 

principal component analysis (GDPCA) were applied to the closing prices, simple returns and 

log of returns of the top 100 holdings of Standard & Poor’s 500 (S&P500) from year 2020 to 

year 2023. The S&P 500 is a stock market index that tracks the stock performance of 500 large-

cap U.S. companies. The performances of the aforementioned variants of PCA on these data for 

different timeframes were compared. Results showed that GDPCA works best for non-

stationary time series data such as the closing prices and DPCA works best for stationary time 

series data such as the simple returns and the log of returns. The results obtained from the 

empirical analysis was further supported by simulation studies that follow, hence GDPCA and 

DPCA could be among the most appropriate dimensionality reduction approaches for non-

stationary and stationary time series data respectively.  

Keywords: stock market; non-stationary time series; geometric Brownian Motion; GJR-

GARCH; GARCH  

 

ABSTRAK  

Kajian ini menyelidik dan mengenalpasti pendekatan-pendekatan pengurangan dimensi yang 

sesuai berpandukan varian-varian analisis komponen prinsipal untuk pelbagai penjelmaan data 

harga saham. Analisis komponen prinsipal statik, analisis komponen prinsipal dinamik dan 

analisis komponen prinsipal dinamik teritlak telah dikenakan pada harga tutup, pulangan mudah 

dan pulangan log harian untuk 100 saham terbesar yang tersenarai dalam Standard & Poor’s 500 

(S&P500) dari tahun 2020 ke tahun 2023. S&P500 merupakan indeks pasaran saham yang 

mengesan prestasi saham bagi 500 syarikat dengan modal pasaran yang besar di Amerika 

Syarikat. Prestasi varian-varian tersebut atas data yang mempunyai jangka masa berbeza juga 

telah dibandingkan. Keputusan menunjukkan bahawa analisis komponen prinsipal dinamik 

teritlak merupakan varian yang paling sesuai untuk siri-siri masa tidak pegun seperti data harga 

tutup saham manakala analisis komponen prinsipal dinamik adalah paling sesuai untuk siri-siri 

masa pegun seperti pulangan mudah dan pulangan log. Keputusan daripada simulasi-simulasi 

yang dijalankan seterusnya juga menyokong kesimpulan yang telah diperoleh daripada analisis 

empirikal, justeru analisis komponen prinsipal dinamik teritlak ialah antara pendekatan-

pendekatan pengurangan dimensi siri masa tidak pegun yang paling berkesan manakala analisis 

komponen prinsipal dinamik ialah antara pendekatan-pendekatan pengurangan dimensi siri 

masa pegun yang paling sesuai.     

Kata kunci: pasaran saham; siri masa tidak pegun; gerakan Brownan geometri; GJR-GARCH; 

GARCH 
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1. Introduction  

Time series data is characterised by high dimensionality, large volume, and the presence of both 

noise and redundant features (Ashraf et al. 2023). Despite the notoriously volatile and 

unpredictable nature of financial data such as the stock price data, these data are used 

extensively in various finance-related endeavours such as technical analyses, quantitative 

research, and portfolio optimisations (Imai & Tan 2006; Wang 2006; Zhong & Enke 2017; 

Zhang & Wang 2023; Song et al. 2023). To individual and institutional investors, it is of great 

interest to extract as much relevant information and signals from such data to aid high-stakes 

decision making. Without performing any dimensionality reduction, these data in their original 

forms are often large and too complex to be deciphered straight away. The implementation of 

a suitable variant of dimensionality reduction helps reduce this complexity, which has the 

potential to enhance modeling and forecasting performance in the context of time series data. 

Principal Component Analysis (PCA) is a widely used and powerful unsupervised statistical 

technique for reducing the dimensionality of high-dimensional datasets. The essence of the 

classical PCA is to transform a high-dimensional dataset with multiple features orthogonally to 

a lower dimension in the form of linearly uncorrelated variables named principal components 

(PCs), which are linear combinations of the features in the original dataset (Jolliffe 2002), 

thereby making the most salient relationships within such dataset more apparent. 

The introduction of PCA led to innovations to deal with data with dynamic characteristics 

such as time series data. Dimensionality reduction of time series data is more challenging than 

that of regular multivariate data due to its dynamic behaviour and the presence of noise. To 

widen the scope of applications of PCA to time series analysis, Ku et al. (1995) proposed the 

application of PCA on the augmented time series observations that include values of series up 

to a certain number of lags. The resulting PCs are linear combinations of past and present values 

of the observed time series. However, with such definitions of PCs, there is no clear approach 

for reconstructing the observed time series (Peña & Yohai 2016). Generally, the classical PCA 

is unable to account for the dynamic nature of multivariate time series data. In reducing the 

dimension of time-dependent data, Brillinger (1981) proposed dynamic principal component 

analysis (DPCA), also known as the frequency domain principal component analysis, which 

extends the classical PCA by capturing the serial dependence between the observations and 

identifying the dynamic components that incorporate the variations of these observations over 

time. 

Since the introduction of DPCA, there have been some applications of DPCA in fields that 

involve time series analysis. In the context of economics and finance, Mancino and Renò (2005) 

used DPCA as a part of the procedure to analyse multivariate volatility of stocks through 

Fourier analysis. Elliott et al. (2006) constructed some forecasting methods for time series in 

economics, finance and marketing based on DPCA. Donadelli and Paradiso (2014) also carried 

out DPCA to examine the financial integration process of emerging equity markets in Latin 

America, Asia and Eastern Europe. 

A crucial requirement of DPCA is that the time series being analysed should be stationary 

(Brillinger 1981). Even though this does not forbid the application of DPCA on time series in 

general, the usefulness of DPCA in the real world could be limited since it is rare for observed 

time series to be truly stationary, considering that most real-world phenomena are affected by 

factors that change over time (Mader et al. 2006). To approach dimensionality reduction of 

non-stationary multivariate time series data, Peña and Yohai (2016) proposed generalised 

dynamic principal component analysis (GDPCA), which is an extension of DPCA. In GDPCA, 

the PCs need not be a linear combination of the observations, and various loss functions 
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including robust ones could be considered. Peña and Yohai (2016) also introduced a robust 

version of GDPCA that could deal with the presence of outliers. 

One possible use of other variants of PCA (i.e. DPCA, GDPCA), that is yet to be explored 

thoroughly, is its application on various transformations (e.g. simple return, log of returns) of 

time series data related to stock prices. The literature on dimensionality reduction of financial 

data using DPCA or GDPCA is limited (Elliott et al. 2006; Donadelli & Paradiso 2014; 

Mancino & Renò 2005), and there is no consensus on how the classical PCA, DPCA or GDPCA 

would perform on stock prices under various transformations. The nature of the transformations 

of stock price data might warrant the use of certain variants of PCA to minimise the loss of 

information. Moreover, the use of GDPCA specifically could effectively reduce the complexity 

of the original dataset, potentially enhancing forecasting performance. Should such variants 

exist, these methods could form the groundwork of dimensionality reduction of various 

transformations of stock price data and, in turn, make the results of PCA more useful in the 

settings of investment and finance. 

This work serves as an exploratory study to determine the most suitable variant of PCA, 

whether PCA, DPCA, or GDPCA, for reducing the dimensionality of various time series data 

with stationary and non-stationary characteristics. This is illustrated using transformations of 

stock price data, such as closing prices, simple returns, and log returns, for the top 100 holdings 

of the Standard & Poor’s 500 (S&P 100). Additionally, it assesses the performance of these 

PCA variants across different timeframes. It is important to note that the simulation study in 

this work is designed for a shorter time frame compared to the real data application because 

simulated data behaves according to the model from which it is generated, whereas real data 

accounts for ’unexpected’ changes that may not be captured in the simulated data. Therefore, 

data-dependent behavior is studied using real data over a longer period. In Section 2, the 

frameworks for PCA, DPCA, GDPCA and the models used in the simulation studies are 

explained. Section 3 gives the results of the application of the variants of PCA on the S&P100 

stock price data. Section 4 presents the simulation studies to generalise the findings and Section 

5 concludes. 

2. Methodology  

2.1. Variants of principal component analysis  

2.1.1. Principal component analysis (PCA)  

Suppose a data matrix 𝐙  comprising 𝑇  daily stock price data points (rows) of 𝑚  stocks 

(columns) and 𝑇 > 𝑚 . Let 𝐳𝑗 , 1 ≤ 𝑗 ≤ 𝑚  be the 𝑗 -th column of 𝐙 . PCA finds the set of 

orthonormal column vectors 𝒖𝒌, 𝑘 = 1, 2, … , 𝑚 , in that order, that maximise 𝑉𝑎𝑟(𝒖𝒌′𝐳𝑗) 

(Jolliffe 2002) or equivalently, minimise the reconstruction criterion ∑ ||𝐳𝑗 − �̂�𝑗||2𝑚
𝑗=1 , where 

�̂�𝑗 is the orthogonal projection of 𝐳𝑗 onto 𝒖𝒌 in the 𝑇-dimensional space (Pearson 1901). 

Let 𝚺 = 𝐙′𝐙/T be the sample covariance matrix of 𝐳𝑗 (Peña & Yohai 2016). Under PCA, 

the solution for 𝒖𝒌 is the unit eigenvector of 𝚺 having the 𝑘-th largest eigenvalue. 𝒖𝒌 is thus 

the vector of coefficients for the 𝑘-th PC (Jolliffe 2002). 

2.1.2. Dynamic principal component analysis (DPCA)  

Let {𝑧𝑡 }, −∞ < 𝑡 < ∞ be a zero mean 𝑚-dimensional stationary process. DPCA aims to 

minimise the same reconstruction criterion in sub-subsection 2.1.1 through Fourier analysis 

(Brillinger 1981). 
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Under the original definition, DPCA finds 𝑚 × 1 vectors 𝒄ℎ, −∞ < ℎ < ∞ and 𝛽𝑗, −∞ <

𝑗 < ∞, so that the linear combination 

 

𝑓𝑡 = ∑ 𝒄′ℎ
∞
ℎ=−∞ 𝑧𝑡−ℎ (1) 

 

minimises the loss function 𝐸 [(𝑧𝑡 − ∑ 𝛽𝑗
∞
𝑗=−∞ 𝑓𝑡+𝑗)

′
(𝑧𝑡 − ∑ 𝛽𝑗

∞
𝑗=−∞ 𝑓𝑡+𝑗)] . 𝑓𝑡  is then 

considered as the first DPC (Peña & Yohai 2016). 

The solutions to 𝒄𝑘 and 𝛽𝑗 are the inverse Fourier transforms of the PCs of the cross spectral 

matrices for each frequency and the inverse Fourier transforms of the conjugates of the same 

PCs respectively (Brillinger 1981). More commonly, DPCA is applied to stationary processes 

with finite number of time points. In this case, the number of lags in Eq. (1) and in the 

reconstruction of the time series should be replaced with the corresponding finite number (Peña 

& Yohai 2016). 

2.1.3. Generalised dynamic principal component analysis (GDPCA)  

The algorithm of GDPCA adopted here is the same as that presented in Peña and Yohai’s work 

(2016). Let {𝑧𝑗,𝑡}, 1 ≤ 𝑗 ≤ 𝑚, 1 ≤ 𝑡 ≤ 𝑇  be a non-stationary time series. Let 𝑘1 ≥ 0 be the 

number of lags and 𝑘2 ≥ 0  be the number of leads. Let 𝑘 =  𝑘1 + 𝑘2 . Also let 𝐟 =
(𝑓1, … , 𝑓𝑇+𝑘)′, 𝛽 = (𝛽𝑗,𝑖)1≤𝑗≤𝑚,1≤𝑖≤𝑘+1 and 𝛼 = (𝛼1, … , 𝛼𝑚) be the unknowns to be solved.  

The reconstruction criterion to be minimised here is the mean squared error (MSE): 

 

MSE(𝐟, 𝛽, 𝛼) =
1

𝑇𝑚
∑ ∑ (𝑧𝑗,𝑡 − ∑ 𝛽𝑗,𝑖+1

𝑘
𝑖=0 𝑓𝑡+𝑖 − 𝛼𝑗)2𝑇

𝑡=1
𝑚
𝑗=1 . (2) 

 

Some components needed for the solutions are defined in the next part. Let 𝐂𝑗(𝛼𝑗) =

(𝑐𝑗,𝑡,𝑞(𝛼𝑗))1≤𝑡≤𝑇+𝑘,1≤𝑞≤𝑘+1 be the (𝑇 + 𝑘) × (𝑘 + 1) matrix defined by 

 

𝑐𝑗,𝑡,𝑞(𝛼𝑗) = {
  (𝑧𝑗,𝑡−𝑞+1 − 𝛼𝑗)   if  1 ∨ (𝑡 − 𝑇 + 1) ≤ 𝑞 ≤ (𝑘 + 1) ∧ 𝑡;

0                  if otherwise;                                 
  

 

where 𝑎 ∨ 𝑏 = max (𝑎, 𝑏)  and 𝑎 ∧ 𝑏 = min (𝑎, 𝑏) . Let 𝐃𝑗(𝛽𝑗) = (𝑑𝑗,𝑡,𝑞(𝛽𝑗))  be the (𝑇 +

𝑘) × (𝑇 + 𝑘) matrix given by 

 

𝑑𝑗,𝑡,𝑞(𝛽𝑗) = {
∑ 𝛽𝑗,𝑞−𝑣+1𝛽𝑗,𝑡−𝑣+1

𝑡∧𝑇
𝑣=(𝑡−𝑘)∨1    if  (𝑡 − 𝑘) ∨ 1 ≤ 𝑞 ≤ (𝑡 + 𝑘) ∧ (𝑇 + 𝑘);

   0                        if otherwise;                       
  

 

and 𝐃(𝛽) = ∑ 𝐃𝑗(𝛽𝑗)𝑚
𝑗=1 . After differentiating Eq. (2) with respect to 𝑓𝑡, the solution is 

 

𝐟 =  𝐃(𝛽)−1 ∑ 𝐂𝑗(𝛼)𝛽𝑗.𝑚
𝑗=1  (3) 

 

𝛽𝑗 and 𝛼𝑗 , 1 ≤ 𝑗 ≤ 𝑚, can also be obtained using the least squares estimator 

 

(𝛽𝑗
𝛼𝑗

) = (𝐅(𝐟)′𝐅(𝐟))
−1

𝐅(𝐟)′𝐳(𝑗), (4) 
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where 𝐳(𝑗) = (𝑧𝑗,1, … , 𝑧𝑗,𝑇)′  and 𝐅(𝐟)  is the 𝑇 × (𝑘 + 2)  matrix with t-th row 

(𝑓𝑡, 𝑓𝑡+1, … , 𝑓𝑡+𝑘, 1). Eqs. (3) and (4) define GDPC1. GDPC2 is defined as PC1 of the residuals 

𝑅𝑗,𝑡(𝐟, 𝛽). Subsequent GDPCs are also defined similarly. 

2.2. Models in simulation studies  

Geometric Brownian motion (GBM), the Glosten Jagannatan Runkle-Generalized 

Autoregressive Conditional Heteroscedasticity (GJR-GARCH) model and the Generalized 

Autoregressive Conditional Heteroscedasticity (GARCH) model are used to simulate closing 

prices, simple returns and log of returns of S&P100 respectively. The choices of models were 

based on the most preferred methods for simulating stock price data in the literature (Nugroho 

et al. 2019; Kambouroudis et al. 2016; Reddy & Clinton 2016; Marathe & Ryan 2005) and 

these models were further supported by good model fits to the S&P100 stock price data. To 

avoid overfitting and ensure good generalisations to unseen data, the number of parameters was 

minimised without compromising the model fit (Ying 2019). 

2.2.1. Geometric Brownian motion (GBM)  

Let 𝑋(𝑡)  be a GBM and 𝑍(𝑡)  be a standard Brownian motion. The stochastic differential 

equation of GBM is d𝑋(𝑡) = 𝜇𝑋(𝑡) d𝑡 + 𝜎𝑋(𝑡) d𝑍(𝑡) (McDonald 2013). Since a process that 

follows GBM is lognormally distributed, 

 

ln[𝑋(𝑡)] ~ 𝑁(ln[𝑋(0)] + (𝜇 − 0.5𝜎2)𝑡, 𝜎2𝑡). (5) 

 

As a consequence of Eq. (5), 

 

𝑋(𝑡) = 𝑋(0)𝑒(𝜇−0.5𝜎2)𝑡+𝜎2𝑡𝑍, (6) 

 

where 𝑍 ~ 𝑁(0,1)  (McDonald 2013). For each stock, 𝜎√𝑡  is estimated using the sample 

standard deviations of observed log of returns and (𝜇 − 0.5𝜎2)𝑡 is estimated using the mean of 

observed log of returns (McDonald 2013). 

2.2.2. The GJR-GARCH(1,1,1) model  

The conditional variance equation of the GJR-GARCH(1,1,1) model for simulating simple 

returns is 

 

𝜎𝑡
2 =  𝜃0 +  𝛿1𝜎𝑡−1

2 + 𝜃1𝜀𝑡−1
2 + 𝛾1𝜀𝑡−1

2 𝐼𝑡−1(𝜀𝑡−1 < 0), (7) 

 

where 𝜃0 > 0  is the additive constant of the variance equation; 𝜃1 ≥ 0  is the ARCH 

coefficient; 𝛿1 ≥ 0 is the GARCH coefficient; 𝜃1 + 𝛿1 < 1 to ensure that {𝜎𝑡
2} is defined and 

is weakly stationary; 𝛾1  is the asymmetric parameter and 𝐼𝑡−1(𝜀𝑡−1 < 0)  is the indicator 

function that equals one when 𝜀𝑡−1 < 0 and zero otherwise (Glosten et al. 1993). 

The simulated simple returns are then given by 

 

𝑟𝑡|ℱ𝑡−1 = 𝐸(𝑟𝑡|ℱ𝑡−1) + 𝜀𝑡, (8) 

 

where 𝐸(𝑟𝑡|ℱ𝑡−1) is the mean of returns conditional on the information set, ℱ𝑡−1, up until and 

including 𝑡 − 1 and 𝜀𝑡 =  𝜎𝑡𝑧𝑡 where 𝑧𝑡  ~ 𝑁(0,1) (Glosten et al. 1993). 
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2.2.3. The GARCH(1,1) model  

The conditional variance equation of the GARCH(1,1) model for simulating log of returns is 

 

𝜎𝑡
2 =  𝜃0 +  𝛿1𝜎𝑡−1

2 + 𝜃1𝜀𝑡−1
2 , (9) 

 

where 𝜃0 > 0  is the additive constant of the variance equation; 𝜃1 ≥ 0  is the ARCH 

coefficient; 𝛿1 ≥ 0 is the GARCH coefficient; 𝜃1 + 𝛿1 < 1 to ensure that {𝜎𝑡
2} is defined and 

is weakly stationary. Under the GARCH(1,1) model setting, the simulated log of returns are 

also given by Eq. (8) (Bollerslev 1986). 

3. Application to Real Data 

3.1. Data description  

Three-year closing prices of S&P100 from 29 March 2020 to 28 March 2023 were downloaded 

from Yahoo Finance through the R package quantmod (Ryan et al. 2022). To examine the 

performance of PCAs on time series of different lengths, specific 6-month, 1-year, 2-year and 

3-year periods were used in the subsequent analysis. The exact dates of those periods can be 

found in Table 1. 

Table 1: Specific periods of stock market data used for analyses 

Length First trading day Last trading day Number of trading days 

6 months 1 July 2022 30 December 2022 127 

1 year 3 January 2022 30 December 2022 251 

2 years 4 January 2021 30 December 2022 503 

3 years 30 March 2020 27 March 2023 754 

 

3.2. PCAs on closing prices  

PCA, DPCA and GDPCA were applied to the closing prices of S&P100 during the specified 6-

month, 1-year, 2-year and 3-year periods by using the freqdom (Hormann & Kidzinski 2022) 

and gdpc (Peña et al. 2020) R packages. 

Variants of PCA studied in this work were applied to mean-centered closing prices. In this 

context, PCA reduces the time points to lags where the dimension is reduced to the optimal lag 

length based on all the time points. 

Regardless of PCA variants and investigated timeframes, the proportions of variance 

explained by the first three PCs are approximately 90%. Hence, the first three PCs were used 

to approximate the mean-centered closing prices before they are back transformed using the 

original means. Then, the mean absolute errors (MAE), root mean square errors (RMSE) and 

mean absolute percentage errors (MAPE) of the approximation for each stock were calculated 

(see Tables 2 and 3). Figure 1(a) shows the approximation of the 6-month closing prices for 

Bristol-Myers Squibb Company (BMY) using the first three PCs. Figure 2, Figure 3 and Figure 

4 show the boxplots of the RMSE, MAE and MAPE of the approximation of closing prices for 

S&P100 respectively. On the horizontal axis of these figures, “P” represents PCA; “D” 

represents DPCA; and “G” represents GDPCA. 
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Table 2: Proportion of variance explained by the first three PCs when PCAs were applied to closing prices 

Periods 

Observed Closing Prices (S&P100) 

Variance Explained (3 PCs) 

PCA DPCA GDPCA 

6 months 91.72% 91.92% 98.61% 

 

1 year 89.68% 89.83% 98.06% 

 

 

2 years 89.86% 89.92% 97.61% 

 

 

3 years 91.92% 91.97% 97.64% 

 

 

 

Table 3: Averages and standard deviations of MAE, RMSE and MAPE when PCAs were applied to closing prices 

Periods 

Observed Closing Prices (S&P100) 

MAE RMSE MAPE 

PCA DPCA GDPCA PCA DPCA GDPCA PCA DPCA GDPCA 

6 

months 

4.25 4.16 1.77 5.34 5.23 2.28 2.33 2.28 1.00 

(3.19) (3.11) (1.20) (4.06) (3.98) (1.55) (0.87) (0.85) (0.34) 

1 year 
7.46 7.42 3.21 9.32 9.25 4.10 3.95 3.90 1.71 

(5.63) (5.60) (2.34) (7.03) (6.98) (2.99) (1.52) (1.50) (0.61) 

2 years 
9.08 9.21 4.45 11.27 11.59 5.67 4.81 4.85 2.36 

(7.30) (7.35) (3.15) (8.90) (9.10) (4.04) (2.06) (2.10) (0.79) 

3 years 
9.89 10.19 5.44 12.21 12.60 6.90 5.74 5.87 3.15 

(7.75) (7.98) (3.71) (9.53) (9.79) (4.75) (2.70) (2.76) (1.16) 

 

Figure 1: Approximation of 6-month (a) closing prices using the first three PCs; (b) simple returns using the first 

ten PCs; (c) log of returns using the first ten PCs for Bristol-Myers Squibb Company (BMY) 
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Figure 2: Boxplots of RMSE of closing price approximations using the first three PCs of various PCAs for (a) 6-

month, (b) 1-year, (c) 2-year and (d) 3-year periods. 

 
 

 

 

 
Figure 3: Boxplots of MAE of closing price approximations using the first 3 PCs of various PCAs for (a) 6-month, 

(b) 1-year, (c) 2-year and (d) 3-year periods 
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Figure 4: Boxplots of MAPE of closing price approximations using the first 3 PCs of various PCAs for (a) 6-

month, (b) 1-year, (c) 2-year and (d) 3-year periods 

 

3.3. PCAs on simple returns  

The procedure of applying variants of PCA on simple returns data is similar to that of subsection 

3.2 except that no mean-centering is required for simple returns data. 

Regardless of PCA variants and investigated timeframes, the proportions of variance 

explained by the first ten PCs are approximately 70%. Hence, the first ten PCs were used to 

approximate the simple returns. Then, the MAE and RMSE of the approximation for each stock 

were calculated (see Tables 4 and 5). Figure 1(b) shows the approximation of 6-month simple 

returns of BMY using the first ten PCs. Figure 5 and Figure 6 show the boxplots of the RMSE 

and MAE of the approximation of simple returns for S&P100 respectively. On the horizontal 

axis of these figures, “P” represents PCA; “D” represents DPCA; and “G” represents GDPCA. 

Table 4: Proportion of variance explained by the first ten PCs when PCAs were applied to simple returns 

Periods 

Observed Simple Returns 

(S&P100) 

Variance Explained (10 PCs) 

PCA DPCA GDPCA 

6 months 76.77% 83.60% 77.93% 

 

1 year 74.13% 79.12% 74.43% 

 

 

2 years 68.68% 72.66% 71.63% 

 

 

3 years 68.65% 72.18% 72.26% 
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Table 5:  Averages and standard deviations of MAE and RMSE when PCAs were applied to simple returns 

Periods 

Observed Simple Returns (S&P100) 

MAE RMSE 

PCA DPCA GDPCA PCA DPCA GDPCA 

6 months 
0.00705 0.00499 0.00700 0.00980 0.00654 0.00958 

(0.00145) (0.00108) (0.00145) (0.00224) (0.00150) (0.00210) 

1 year 
0.00786 0.00655 0.00785 0.01105 0.00869 0.01101 

(0.00156) (0.00114) (0.00148) (0.00232) (0.00158) (0.00223) 

2 years 
0.00749 0.00684 0.00741 0.01065 0.00925 0.01019 

(0.00149) (0.00120) (0.00128) (0.00225) (0.00167) (0.00185) 

3 years 
0.00787 0.00731 0.00774 0.01124 0.00999 0.01063 

(0.00155) (0.00128) (0.00132) (0.00239) (0.00181) (0.00188) 

 

 

 

 

 

Figure 5: Boxplots of RMSE of simple return approximations using the first ten PCs of various PCAs for (a) 6-

month, (b) 1-year, (c) 2-year and (d) 3-year periods 
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Figure 6: Boxplots of MAE of simple return approximations using the first 10 PCs of various PCAs for (a) 6-

month, (b) 1-year, (c) 2-year and (d) 3-year periods 

 

3.4. PCAs on log of returns  

To examine the performance of PCAs on stationary time series, for each period, only the stocks 

among the Top 100 that are concluded to have stationary log of returns based on the Augmented 

Dickey-Fuller (ADF) test and the Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) test are 

included in the analysis. The list of excluded stocks for each period analysed are available in 

Table 6. 

Table 6: Results of the ADF test and the KPSS test 

Periods Stocks with non-stationary log 

of returns (ADF) 

Stocks with non-stationary log 

of returns (KPSS) 

Number of 

stocks with 

stationary log 

of returns 

6 months 2 

(GILD, HON) 

1 

(TSLA) 

97 

1 year 0 2 

(GILD, SBUX) 

98 

2 years 0 2 

(GOOG, GOOGL) 

98 

3 years 0 7 

(PYPL, DHR, TSLA, GOOG, 

LOW, GOOGL, MS) 

93 

 

The procedure of applying variants of PCAs on log of returns data is similar to that of 

subsection 3.3. Regardless of PCA variants and investigated timeframes, the proportions of 

variance explained by the first ten PCs are approximately 70%. Hence, the first ten PCs were 

used to approximate the log of returns. Then, the MAE and RMSE of the approximation for 

each stock were calculated (see Tables 7 and 8). Figure 1(c) shows the approximation of 6-

month log of returns of BMY using the first ten PCs. Figure 7 and Figure 8 show the boxplots 
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of the RMSE and MAE of the approximation of log of returns respectively. On the horizontal 

axis of these figures, “P” represents PCA; “D” represents DPCA; and “G” represents GDPCA. 

Table 7: Proportion of variance explained by the first ten PCs when PCAs were applied to stationary log of returns 

Periods 

Observed Stationary Log of 

returns 

Variance Explained (10 PCs) 

PCA DPCA GDPCA 

6 months 76.83% 83.83% 77.49% 

 

1 year 74.45% 79.35% 74.85% 

 

 

2 years 68.70% 72.65% 71.19% 

 

 

3 years 68.67% 72.26% 72.43% 

 

 

 

Table 8:  Averages and standard deviations of MAE and RMSE when PCAs were applied to stationary log of returns 

Periods 

Observed Stationary Log of returns 

MAE RMSE 

PCA DPCA GDPCA PCA DPCA GDPCA 

6 months 
0.00701 0.00486 0.00695 0.00971 0.00640 0.00959 

(0.00141) (0.00097) (0.00143) (0.00213) (0.00137) (0.00212) 

1 year 
0.00786 0.00651 0.00783 0.01106 0.00862 0.01099 

(0.00160) (0.00113) (0.00158) (0.00241) (0.00158) (0.00235) 

2 years 
0.00749 0.00682 0.00746 0.01066 0.00926 0.01030 

(0.00151) (0.00120) (0.00132) (0.00230) (0.00168) (0.00187) 

3 years 
0.00774 0.00717 0.00755 0.01102 0.00979 0.01039 

(0.00142) (0.00119) (0.00122) (0.00217) (0.00169) (0.00175) 
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Figure 7: Boxplots of RMSE of stationary log of return approximations using the first ten PCs of various PCAs for 

(a) 6-month, (b) 1-year, (c) 2-year and (d) 3-year periods 

 

 
Figure 8: Boxplots of MAE of stationary log of return approximations using the first 10 PCs of various PCAs for 

(a) 6-month, (b) 1-year, (c) 2-year and (d) 3-year periods 

 

3.5. Discussion  

When applied to closing prices, GDPCA always has the highest proportions of variance 

explained and the lowest approximation errors. Meanwhile, for simple returns and log of returns, 

DPCA always has the lowest approximation errors. DPCA also always has the highest 

proportion of variance explained except for 3-year returns, in which its variance explained is 

comparable to that of GDPCA. 

GDPCA is unique in its ability to handle datasets with non-stationarity features and outliers, 

hence it stands out when PCAs are applied to closing prices. Meanwhile, DPCA works best at 
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capturing the dynamics of stationary time series and therefore it is the best method when it 

comes to stationary data such as the log of returns. This work sheds light to the effectiveness of 

dimensionality reduction using DPCA on simple returns as well as log of returns data, and 

GDPCA on closing prices data. 

As the length of time of the stock price data increases, the approximation errors of PCAs 

increase. Stock prices and returns become more unpredictable in the long run, therefore for the 

same number of PCs, only a lower proportion of total signals could be captured. GDPCA’s 

ability to capture the underlying structure of non-stationary data can be evaluated by assessing 

the reconstruction error, similar to the approach used for PCA. This enables a meaningful 

comparison between GDPCA’s projection performance and the prediction performance of other 

models, aligning with previous work that explores PCA’s role in prediction accuracy. 

To validate the observations and generalise the findings, some simulation studies were 

carried out. 

4. Simulation Studies 

4.1. Simulating closing prices using geometric Brownian motion (GBM)  

After estimating the parameters for each stock using the observed log of returns, GBM was 

used to simulate the closing prices of S&P100 during the specified 6-month and 1-year periods. 

Simulations longer than a year are not considered due to the volatility and unpredictable 

behaviour of the stock market so it would not make sense to expect trends in price movements 

to persist for long (Ma et al. 2022; Wei & Huang 2012). One year is considerably long enough 

for stock market data simulations since many unforeseen circumstances and black swan events 

could still occur in such timeframes (Wei & Huang 2012). 

For each set of simulated closing prices (each iteration), PCAs were applied to the simulated 

data and the proportion of variance explained by the first three PCs, MAEs, RMSEs and MAPEs 

of the approximations for each stock were calculated. The number of iterations was increased 

until the averages and standard deviations of proportions of variance explained, mean MAEs, 

mean RMSEs and mean MAPEs converge. In this case, 50 iterations are sufficient to achieve 

such convergence. The simulation results confirm that GDPCA performs best for closing price 

data (see Tables 9 and 10). 

Table 9: Averages and standard deviations of proportions of variance explained by the first three PCs when PCAs 

were applied to the simulated closing prices using 50 iterations of geometric Brownian motion model 

Periods 

Simulated Closing Prices from 

Geometric Brownian Motion (GBM) 

Variance Explained (3 PCs) 

PCA DPCA GDPCA 

6 months 
90.42% 90.72% 98.52% 

(3.58%) (3.43%) (0.55%) 

1 year 
89.85% 90.02% 98.03% 

(3.46%) (3.38%) (0.68%) 
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Table 10: Mean MAE, mean RMSE and mean MAPE when PCAs were applied to the simulated closing prices 

using 50 iterations of geometric Brownian motion model 

Periods 

Simulated Closing Prices from Geometric Brownian Motion (GBM) 

MAE RMSE MAPE 

PCA DPCA GDPCA PCA DPCA GDPCA PCA DPCA GDPCA 

6 

months 

6.21 6.12 2.54 7.70 7.60 3.18 3.31 3.26 1.39 

(4.92) (4.84) (1.78) (6.08) (6.01) (2.23) (1.37) (1.34) (0.49) 

1 year 
10.96 10.94 5.04 13.66 13.65 6.34 5.11 5.10 2.41 

(9.50) (9.48) (3.87) (11.81) (11.85) (4.87) (2.34) (2.37) (0.92) 

 

4.2. Simulating simple returns using the GJR-GARCH(1,1,1) model 

The GJR-GARCH(1,1,1) model is fitted to the observed simple returns of S&P100 for the 

specified 6-month and 1-year periods using the R package rugarch (Ghalanos 2022). Through 

the weighted Ljung-Box test on standardized residuals and the weighted Ljung-Box test on 

standardized squared residuals that came along with the model fits, it was concluded that GJR-

GARCH(1,1,1) model is a good fit to the simple returns of 92 stocks for the 6-month period 

and 89 stocks for the 1-year period, thus in general, GJR-GARCH(1,1,1) model is a good fit to 

the simple returns of S&P100. The list of stocks having simple returns that were not fitted well 

by GJR-GARCH(1,1,1) is available in Table 11. 

Table 11: Stocks having simple returns not fitted well by GJR-GARCH(1,1,1) 

Periods Stocks poorly fitted by GJR-GARCH(1,1,1) 

6 months 8 

(LLY, ORCL, TSLA, SYK, GS, BAC, VRTX, CI) 

1 year 11 

(LLY, ZTS, TSLA, IBM, BKNG, MS, GS, BAC, CI, TJX, DE) 

 

The fitted parameters of the GJR-GARCH(1,1,1) model were used to simulate simple 

returns for the 92 stocks during the 6-month period and the 89 stocks during the 1-year period. 

For each set of simulated simple returns (each iteration), PCAs were applied to the simulated 

returns and the proportion of variance explained by the first ten PCs, MAEs and RMSEs of the 

approximations for each stock were calculated. 

The number of iterations was increased until the averages and standard deviations of 

proportions of variance explained, mean MAEs and mean RMSEs converge. In this case, 50 

iterations are sufficient to achieve such convergence. The simulation results are in line with the 

findings in subsection 3.3 (see Tables 12 and 13). 
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Table 12: Averages and standard deviations of proportions of variance explained by the first ten PCs when PCAs 

were applied to the simulated simple returns using 50 iterations of GJR-GARCH(1,1,1) model 

Periods 

Simulated Simple Returns from 

GJR-GARCH(1,1,1) 

Variance Explained (10 PCs) 

PCA DPCA GDPCA 

6 months 
52.22% 66.05% 60.25% 

(6.94%) (4.74%) (6.55%) 

1 year 
36.36% 49.51% 47.12% 

(2.90%) (2.09%) (3.04%) 

 

Table 13: Mean MAEs and mean RMSEs when PCAs were applied to the simulated simple returns using 50 

iterations of GJR-GARCH(1,1,1) model 

Periods 

Simulated Simple Returns from GJR-GARCH(1,1,1) 

MAE RMSE 

PCA DPCA GDPCA PCA DPCA GDPCA 

6 months 
0.01232 0.00865 0.01139 0.01609 0.01106 0.01469 

(0.00514) (0.00315) (0.00471) (0.00677) (0.00412) (0.00605) 

1 year 
0.01265 0.01014 0.01173 0.01653 0.01295 0.01513 

(0.00364) (0.00241) (0.00317) (0.00478) (0.00308) (0.00403) 

 

4.3. Simulating log of returns using the GARCH(1,1) model 

The GARCH(1,1) model is fitted to the observed log of returns of S&P100 for the specified 6-

month and 1-year periods using the R package rugarch (Ghalanos 2022). Through the weighted 

Ljung-Box test on standardized residuals and the weighted Ljung-Box test on standardized 

squared residuals that came along with the model fits, it was concluded that the GARCH(1,1) 

model is a good fit to the log of returns of 90 stocks for the 6-month period and 87 stocks for 

the 1-year period, thus in general, the GARCH(1,1) model is a good fit to the log of returns of 

S&P100. The list of stocks having log of returns that were not fitted well by the GARCH(1,1) 

model is available in Table 14. 

Table 14: Stocks having log of returns not fitted well by GARCH(1,1) 

Periods Stocks failed to be fitted by 

GARCH(1,1) 

Stocks poorly fitted by 

GARCH(1,1) 

6 months 5 

(META, WMT, COST, AAPL, TJX) 

5 

(TSLA, BAC, VRTX, NKE, INTC) 

1 year 6 

(INTU, GOOG, GOOGL, COP, NOW, 

MSFT) 

7 

(WMT, TMO, ZTS, TSLA, SO, BAC, AXP) 

 

The procedure of simulations and applications of PCAs on simulated log of returns is the 

same as those in subsection 4.2. For the GARCH(1,1) model, 50 iterations are sufficient for the 

averages and standard deviations of variance explained and approximation errors to converge. 
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The outcome of the simulation study reaffirms the fact that DPCA is best at reducing the 

dimensionality of log of returns data (see Tables 15 and 16). 

Table 15: Averages and standard deviations of proportions of variance explained by the first ten PCs when PCAs 

were applied to the simulated log of returns using 50 iterations of GARCH(1,1) model 

Periods 

Simulated Log of returns from 

GARCH(1,1) 

Variance Explained (10 PCs) 

PCA DPCA GDPCA 

6 months 
46.43% 62.41% 60.48% 

(0.95%) (0.57%) (3.20%) 

1 year 
37.20% 50.45% 52.29% 

(0.69%) (0.47%) (2.22%) 

 

Table 16: Mean MAEs and mean RMSEs when PCAs were applied to the simulated log of returns using 50 

iterations of GARCH(1,1) model 

Periods 

Simulated Log of returns from GARCH(1,1) 

MAE RMSE 

PCA DPCA GDPCA PCA DPCA GDPCA 

6 months 
0.01083 0.00741 0.00929 0.01354 0.00929 0.01163 

(0.00532) (0.00325) (0.00452) (0.00669) (0.00417) (0.00565) 

1 year 
0.01149 0.00903 0.01008 0.01440 0.01131 0.01263 

(0.00430) (0.00289) (0.00353) (0.00544) (0.00368) (0.00442) 

 

5. Conclusion 

Through the application of PCA variants on real stock price data and subsequent simulation 

studies, it can be concluded that GDPCA is suitable for closing prices, which exhibit non-

stationary patterns and noise, while DPCA is more appropriate for simple returns and log 

returns, which exhibit stationarity. This work also indicates that GDPCA can explain the 

variance with fewer principal components than DPCA, which needs more components to 

achieve the same level of variance explained. With the suitable variants of PCA, the extracted 

PCs will serve as useful indicators that could encapsulate various technical aspects of the stocks 

and equip traders and researchers with the most essential information (Liu 2022; Bruna et al. 

2022; Kumar 2022; Zhang & Wang 2023; Zhang 2022). For portfolio optimisations using 

multifactor models, the best asset allocations and portfolio management strategies could also 

be based upon the PCs from the right forms of PCA (Lòpez de Prado 2020).  

The work by Sarıkoç and Celik (2024) introduced a hybrid model for predicting financial 

asset prices, utilising PCA and independent component analysis for preprocessing, followed by 

a long-short-term memory (LSTM) network for forecasting. Future research should explore 

contemporary dimensionality reduction techniques such as t-Distributed Stochastic Neighbor 

Embedding (t-SNE), Uniform Manifold Approximation and Projection (UMAP), Triangular 

Manifold Approximation and Projection (TriMAP), and Pairwise Constant Mapping 

(PaCMAP). These methods are adept at handling complex data and revealing patterns that 
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traditional approaches might overlook, which could enhance model accuracy and understanding. 

Additionally, employing deep learning methods like autoencoders and Convolutional Neural 

Networks (CNNs) for dimensionality reduction could offer significant benefits. Although these 

techniques are not the main focus of this study, they have the potential to provide valuable 

insights and improve our ability to manage high-dimensional data in future research.  

In our future research, we intend to replace PCA with GDPCA for dimensionality reduction 

and de-noising, as GDPCA is more effective at capturing the temporal dynamics in financial 

data. Furthermore, we plan to experiment with various deep learning architectures to enhance 

the accuracy and robustness of our forecasting model. On the other hand, the analysis in this 

study has motivated us to introduce the functional data framework of GDPCA (Khoo et al. 

2024), a significant contribution to the field of dimensionality reduction for non-stationary time 

series data within a functional data framework. 
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