Sains Malaysiana 40(4)(2011): 323–329

 

Characterising Yeast Isolates from Malaysia towards the Development of Alternative Heterologous Protein Expression Systems

(Pencirian Pencilan Yis dari Malaysia untuk Pembangunan Sistem Pengekspresan Protein Heterolog Alternatif)

 

Douglas Law Sie Nguong1, Lim Yao Jun1, Nor Idaya Yatim1, Sheila Nathan2, Abdul Munir Abdul Murad1, Nor Muhammad Mahadi2 & Farah Diba Abu Bakar1*

 

1School of Biosciences and Biotechnology, Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor D.E., Malaysia

 

2Malaysia Genome Institute, Heliks Emas Block, UKM-MTDC Technology Centre

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor D.E., Malaysia

 

Received: 20 July 2010 / Accepted: 18 August 2010

 

ABSTRACT

 

Yeasts with GRAS (Generally Regarded as Safe) status are commonly used as hosts for heterologous protein production. Yeasts are suitable expression hosts as they have been extensively characterised genetically. The objective of this project was to isolate yeasts from Malaysian food sources and subsequently to develop these as alternative hosts for heterologous protein production. Yeasts were isolated from Malaysian traditional fermented food namely ‘tapai’, ‘tuak’ and ‘ragi’. A total of 23 isolates were obtained and subjected to molecular identification by amplification and sequencing of the universally conserved ribosomal internal transcribed spacer (ITS), 26S rDNA and 18S rDNA sequences. We identified three species of yeasts, Saccharomyces cerevisiae, Hanseniaspora guilliermondii and Pichia anomala, which have a long tradition of usage in food production and have no adverse effects on humans. To test the feasibility of the yeasts as heterologous expression hosts, we have constructed an integrative vector, p1926Zeo containing the yeast 26S rDNA and Zeocin® resistance cassette. The p1926Zeo vector was linearised and transformed into both P. anomala and H. guilliermondii isolates via electroporation. Both hosts were successfully transformed at a relatively high efficiency. The transformants obtained had a growth profile similar to the respective wild type, indicating that integration of the plasmids into the host chromosome did not affect growth. These transformants were stable as they exhibited resistance to Zeocin even after 20 generations. Thus, both P. anomala and H. guilliermondii isolates exhibited the potential to be further developed as alternative heterologous protein expression hosts.

 

Keywords: Hanseniaspora guilliermondii; heterologous protein; Pichia anomala; yeast expression systems

 

ABSTRAK

 

Yis berstatus GRAS (Generally Regarded as Safe) merupakan hos yang kerap digunakan dalam penghasilan protein heterolog. Yis merupakan hos pengekspresan yang sesuai kerana maklumat genetiknya telah difahami secara mendalam. Objektif projek ini adalah untuk memencilkan yis daripada sumber makanan di Malaysia dan seterusnya digunakan dalam pembangunan hos alternatif bagi penghasilan protein heterolog. Yis dipencilkan daripada makanan terfermentasi seperti tapai, ragi dan tuak. Sebanyak 23 pencilan yis telah dikenal pasti berdasarkan pada pengecaman molekul yang melibatkan amplifikasi dan penjujukan kawasan yang terpulihara iaitu penjarak jujukan dalaman (ITS), jujukan 26S rDNA serta jujukan 18S rDNA. Tiga pencilan yis telah dikenalpasti mempunyai potensi untuk dijadikan hos alternatif bagi penghasilan protein heterolog iaitu Saccharomyces cerevisiae, Hanseniaspora guiiliermondii dan Pichia anomala yang telah lama digunakan dalam proses penghasilan makanan dan tidak mendatangkan kemudaratan kepada manusia. Untuk menguji kesesuaian yis tersebut sebagai hos pengekspresan, kami telah membina vektor terintergrasi p1926Zeo. Vektor p1926Zeo mengandungi jujukan 26SrDNA yis dan kaset keringtangan terhadap antibiotik Zeocin®. Vektor p1926Zeo telah dilinearkan dan di transformasikan ke dalam kedua-dua pencilan P. anomala dan H. guilliermondii melalui kaedah elektroporasi. Kedua-dua hos tersebut berjaya ditransformasi-kan pada kecekapan yang agak tinggi. Profil pertumbuhan transforman mempunyai kesamaan dengan profil pertumbuhan yis asal tersebut. Ini menunjukkan intergrasi plasmid ke dalam kromosom hos tidak menjejaskan pertumbuhan yis tersebut. Transforman ini juga menunjukkan kerintangan terhadap Zeocin walaupun selepas 20 generasi. Oleh itu, kedua-dua pencilan P. anomala dan H. guilliermondii mempunyai potensi untuk dibangunkan sebagai hos pengekspresan protein heterlog alternatif.

 

Kata kunci: Hanseniaspora guiiliermondii; Pichia anomala; protein heterolog; sistem pengekspresan yis

REFERENCES

 

Agaphonov, M.O., Beburov, M.Y., Ter-Avanesyan, M.D. & Smirnov, V.N. 1995. A distruption-displacement approach for the targeted integration of foreign genes in Hansenula polymorpha. Yeast 10: 509-513.

Beburov, M.Y., Ter-Avanesyan, M.D. & Smirnov, V.N. 1995. A distruption-displacement approach for the targeted integration of foreign genes in Hansenula polymorpha. Yeast 10: 509-513.

Bergkamp, R.J.M., Kool, I.M., Geerse, R.H. & Planta, R.J. 1992. Multi-copy integration of the α-galactosidase gene from Cyamopsis tetragonoloba into the ribosomal DNA of Kluyveromyces lactis. Current Genetics 21: 365-370.

Brito, N., Perez, M.D., Perdomo, G., Gonzalez, C., Garcia-Lugo, P. & Sivero, J.M. 1999. A set of Hansenla polymorpha integrative vectors to construct lacZ fusions. Journal of Applied Microbiology and Biotechnology 53: 23-29.

Calmels, T., Parriche, M., Burand, H. & Tiraby, G. 1991. High efficiency transformation of Tolypocladium geodes conidiospores top resistance. Current Genetics 2: 309-314.

Carlson, M., Taussig, R., Kustu, S. & Olsen, M.V. 1983. The secreted form of invertase in Saccharomyces cerevisiae is synthesized from an mRNA encoding a signal sequence. Molecular and Cellular Biology 3: 439-447.

Cereghino, L. & Cregg, J.M. 2000. Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiology Reviews 24: 45-66.

Cox, H., Mead, D., Sudbery, P., Elands, M. & Evans, L. 2000. Constitutive expression of recombinant proteins in the methylotrophic yeast Hansenula polymorpha using the PMA 1 promoter. Yeast 16: 1191-1203.

Cregg, J.M. 1999. Expression in methylotrophic yeast Pichia pastoris. In Gene expression systems: using nature for the art of expression, edited by Fernandez, J.M., Hoefftler, J.P. San Diego, CA: Academic press.

Dietrich, F.S., Voegeli, S., Brachat, S., Lerch, A., Gates, K., Steiner, S., Mohr, C., Pohlmann, R., Luedi, P., Choi, S., Wing, R.A., Flavier, A., Gaffney, T.D. & Philippsen, P. 2004. The Ashbya gossypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome. Science 304: 304-307.

Gellisen, G. 2005. Production of Recombinant Proteins: Novel Microbial and Eukaryotic Expression Systems. Germany: Wiley-VCH Verlag GmbH & Co.

Gellissen, G. 2000. Heterologous protein production in methylotrophic yeasts. Applied Microbiology and Biotechnology 54: 741-750.

Gellissen, G., Hollenberg, C.P. & Janowicz, Z.A. 1995. Gene expression in methylotrophic yeast. Bioprocessing Technology 22: 195-239.

Gellissen, G. & Melber, K. 1996. Methylotrophic yeast Hansenula polvmorpha as production organism for recombinant pharmaceuticals. Drug Research 46: 943-948.

Guerra, G.O., Rubio, I.G.S., da Silva-Filho, C.G., Bertoni, R.A., dos Santos-Govea, R.C. & Vicente, E.J. 2006. A novel system of genetic transformation allows multiple integrations of desired gene in Saccharomyces cerevisiae chromosomes. Journal of Microbiological Methods 67: 437-445.

Hellwig, S., Stockmann, C., Gellissen, G. & Buchs, J. 2005. Comparative fermentation. In Production of recombinant proteins: novel microbial and eukaryotic expression systems, edited by Gellisen, G. Germany: Wiley-VCH Verlag GmbH & Co.

Ilgen, C., Lin-Cereghino, J. & Cregg, J.M. 2005. Pichia pastoris. In Production of Recombinant Proteins: Novel Microbial and Eukaryotic Expression Systems, edited by Gellisen, G. Germany: Wiley-VCH Verlag GmbH & Co.

Jeyaram, K., Mohendro Singh, W., Capece, A. & Romano, P. 2008. Molecular identification of yeast species associated with ‘Hamei’- A traditional starter used for rice wine production in Manipur, India. International Journal of Food Microbiology 124: 115-125.

Madzak, C., Gaillardin, C. & Beckerich, J-M. 2004. Recombinant proteins and host cell physiology. Journal of Biotechnology 109(1-2): 63-81.

Miller, T.K., Patel, C. & Selitrennikoff, C.P. 2007. Construction of a Saccharomyces cerevisiae strain expressing the Leishmania major nucleotide hydrolyse gene. International Journal of Antimicrobial Agents 29: 103-107.

Murray, J. 1971. Paulesco and the isolation of insulin. Journal of the History of Medicine and Allied Sciences 26: 150-157.

Medlin, L., Elwood, H.J., Stickel, S. & Sogin, M.L. 1988. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71: 491-499.

Sohn, J.H., Choi, E.S., Kim, C.H., Agaphonov, M.O., Ter-Avabesyan, M.D., Rhee, J.S. & Rhee, J.K. 1996. A novel autonomously replicating sequences (ARS) for multiple integration in the yeast Hansenula polymorpha DL-1. Journal of Bacteriology 178: 4420-4428.

Tamas, L. & Shewry, P.R. 2006. Heterlogous expression and protein engineering of wheat gluten proteins. Journal of Cereal Science 43: 259-274.

Teixeira, R.M., Cavalheiro, D., Ninow, J.L. & Furigo, A. Jr. 2002. Optimization of Acetion production by Hanseniaspora guilliermondii using experimental design. Brazilian Journal of Chemical Engineering 19(2): 181-186.

Watson, J.D. & Crick, F.H.C. 1953. Molecular structure of nucleic acids. A structure for deoxyribosenucleic acid. Nature 171: 737-738.

White, T., Burns, T., Lee, S. & Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.K. (eds), London: Academic Press, pp. 315-322.

Wu, S. & Letchworth, G.J. 2004. High efficiency transformation by electroporation of Pichia pastoris pretreated with lithum acetate and dithiothreitol. BioTechniques 36: 152-154.

Yoshizawa, K. 1979. Treament of waste-water discharge from a sake brewery using yeast. Fermentation Technology 56: 389-395.

 

*Corresponding author; e-mail: fabyff@ukm.my

 

 

previous