Sains Malaysiana 40(4)(2011): 353–358

 

Effect of Iron Concentration on Growth, Protein Content and Total Phenolic Content of Chlorella sp. Cultured in Basal Medium

 

(Kesan Kepekatan Ferum terhadap Pertumbuhan, Kandungan Protein dan Jumlah Kandungan Fenolik Chlorella sp. yang dikultur dalam Media Basal)

 

Dian Iriani1, 2 *, Orasa Suriyaphan3 & Nittaya Chaiyanate4

 

1Department of Biological Science, Faculty of Science, Burapha University, 169 Longhard Bangsaen Road, Tamboon Saensook, Amphu Muang, Chonburi 20131, Thailand

 

2Department of Aquaculture, Faculty of Fisheries, Brawijaya University, Malang 65145, Indonesia358

 

3Department of Food Science, Faculty of Science, Burapha University, Chonburi, 20131, Thailand

 

4 Department of Biotechnology, Faculty of Science, Burapha University, Chonburi, 20131, Thailand

 

Received: 9 December 2009 / Accepted: 15 July 2010

 

 

ABSTRACT

 

The aim of this study was to determine the effect of Fe3+ concentration (0.35, 4.89, 9.44 and 13.99 mg/L) on the growth, protein content and total phenolic content of Chlorella sp. The Chlorella sp. cells were grown at 51% relative humidity, 25°C ± 2 under continuous illumination at 36 W irradiance supplied by day-light fluorescent lamp, and agitated by bubbling at a flow rate 2.7 m/s2. Samples were collected every 2 days over 21 days of the cultivation period to estimate the growth of Chlorella sp. Proteint and total phenolic content of samples were determined on phase 7th, 14th, and 21st day of cultivation. Statistical analysis showed that there were significant differences (p<0.05) on growth, protein content and total phenolic content of Chlorella sp. at different iron concentrations. These differences could be related to specific differences in the cell metabolism. Protein content (8.34 mg/g dry weight), total phenolic content (8.70 mgGAE/g dry weight), cell number (1.03 × 107 cell/mL) and the specific growth rate (μ) of Chlorella sp. (1.85/day) were highest at the lowest Fe3+ concentration (0.35 mg/L).

 

Keywords: Chlorella sp.; growth; iron; protein content; total phenolic content

 

ABSTRAK

 

Matlamat kajian ini adalah untuk mengenalpasti kesan kepekatan Fe3+ (0.35, 4.89, 9.44 and 13.99 mg/L) ke atas pertumbuhan, kandungan protein dan jumlah kandungan fenolik Chlorella sp.. Chlorella sp. hidup pada 51% kelembapan relatif, 25°C ± 2 di bawah pencahayaan yang berterusan dengan pemancaran 36 W (TIS 956-2533) yang dibekalkan oleh lampu fluoresen, dan dieram pada kadar pengaliran (2.7 m/s2). Sampel diambil setiap 2 hari sepanjang 21 hari masa pengeraman untuk menganggar kadar pertumbuhan sel Chlorella sp. Kandungan protein dan jumlah fenolik dikenalpasti pada hari ke 7, 14 dan 21 sepanjang tempoh pengeraman. Analisis statistik menunjukkan bahawa terdapat perbezaan yang signifikan (p<0.05) pada pertumbuhan, kandungan protein dan jumlah kandungan fenolik Chlorella sp. pada kepekatan ferum yang berbeza. Perbezaan ini boleh dikaitkan dengan perbezaan spesifik dalam metabolisme sel. Kandungan protein Chlorella sp. (8.34 mg/g berat kering), jumlan kandungan fenolik (8.70 mgGAE/g berat kering), jumlah sel (1.03 × 107 sel/mL), dan kadar pertumbuhan spesifik (μ) Chlorella sp. (1.85/hari) adalah yang tertinggi pada kepekatan Fe3+ yang terendah (0.35 mg/L).

 

Kata kunci: Chlorella sp.; Ferum;  jumlah kandungan fenolik; kandungan protein; pertumbuhan

 

REFERENCES

 

Anderson, R.A. 2005. Algal Culturing Techniques. Amsterdam: Elsevier Academic Press.

Behrenfeld, M.J., Worthington, K., Sherrell, R.M., Chavez, F.P., Strutton, P., McPhaden, M. & Shea, D.M. 2006. Controls on tropical Pacific Ocean productivity revealed through nutrient stress diagnostics. Nature 442: 1025-1028.

Borowitzka, M.A. & Borowitzka, L.J. 1988. Microalgal Biotechnology. Cambridge: Cambridge University Press.

Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248-254.

Estevez, M.S., Malanga, G. & Puntarulo, S. 2001. Iron-dependent oxidative stress in Chlorella vulgaris. Plant Science 161: 9-17.

Imamoglu, E., Sukan., E.F.V. & Dalay, M.C. 2007. Effect of Different Culture Media and Light Intensities on Growth of Haematococcus pluvialis. International Journal of Natural and Engineering Sciences 1(3): 5-9.

Kolber, Z.S., Barber, R., Coale, K.H., Fitzwater, S.E., Greene, R.M., Johnson, K.S., Lindley, S. & Falkowski, P.G. 1994. Iron limitation of phytoplankton photosynthesis in the equatorial Pacific Ocean. Nature 371: 145-149.

Kothamasi, D. & Kothamasi, S. 2005. Cobalt interference in iron-uptake could inhibit growth in Pseudomonas aeruhinosa. World Journal of Microbiology and Biotechnology 20: 755-758.

Li, H.B., Cheng, K.W., Wong, C.C., Fan, K.W., Chen, F. & Jiang, Y. 2007. Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chemistry 102: 771-776.

Rich, H.W. & Morel, F.M.M. 1990. Availability of well defined iron colloids to the marine diatom Thalassiosira weissflofii, Limnology. Oceanography 35: 652-662.

Yuan, J.P., Chen, F., Liu, X. & Li, X.Z. 2002. Carotenoid composition in the green microalga Chlorococcum. Food Chemistry 76: 319-325.

 

*Corresponding author

 

 

previous