Sains Malaysiana 41(10)(2012): 1253–1261
Pembangunan
Sel Fuel Mikrob untuk Rawatan Air Sisa Kilang Sawit
(Development of Microbial Fuel Cell for Palm Oil Mill Effluent
Treatment)
Lim Swee Su*, Jamaliah Md. Jahim, Siti Norhana Shari, Manal
Ismail & Wan Ramli Wan Daud
Institut Sel Fuel, Universiti Kebangsaan Malaysia, 43600 UKM
Bangi, Selangor D.E., Malaysia
Received: 19 August 2010 / Accepted: 15 June 2012
ABSTRAK
Sel fuel mikrob (SFM) merupakan peranti
yang menggunakan bakteria sebagai biomangkin untuk mengoksidakan bahan organik
dan bukan organik bagi menjanakan arus elektrik. Tujuan utama kajian ini ialah menguji kebolehan SFM skala
makmal dengan menggunakan enapcemar yang mengandungi kultur campuran yang hidup dalam air sisa buangan kilang pemprosesan sawit (POME).
Kajian ini juga bertujuan membina reka bentuk SFM yang sesuai dan
mengkaji keaktifan kultur campuran yang boleh
menghasilkan kuasa elektrik. POME telah digunakan dalam bentuk yang
dicairkan dengan kandungan COD bersamaan dengan 3750 mg-COD L-1. Prestasi penghasilan
kuasa elektrik dan kecekapan rawatan yang dinilai daripada segi penyingkiran COD,
nitrogen dan jumlah karbohidrat dalam SFM dwi-ruang telah dicatat dan dianalisis
setiap hari selama 15 hari. Hasil padanan uji kaji dan model
kekutuban adalah memuaskan dan telah menjelaskan ketumpatan kuasa elektrik
yang dapat dihasilkan pada setiap hari. Ketumpatan kuasa didapati
meningkat dari hari pertama 1.607 mW m-2 (3.816 mA m-2) ke nilai maksimum
pada hari ketiga 1.979 mW m-2 (4.780 mA m-2) dan mula turun
sehingga minimum pada hari ketujuh 1.311 mW m-2 (3.346 mA m-2). Peringkat rawatan air sisa kilang sawit oleh SFM boleh dibahagikan
kepada tiga tahap yang berbeza. Kecekapan rawatan yang
rendah walaupun ketumpatan kuasa meningkat pada tahap pertama, manakala pada
tahap kedua kecekapan rawatan lebih tinggi dan akhirnya pada tahap ketiga
penghasilan kuasa SFM mula turun. Kecekapan
rawatan paling tinggi berlaku pada tahap ketiga semasa penghasilan kuasa
elektrik yang terhasil agak malar. Kecekapan rawatan yang dinilaikan
dalam bentuk penyingkiran COD, penggunaan nitrogen dan karbohidrat
paling tinggi berlaku pada hari ke-15 dengan nilai masing-masing adalah 54.9, 100 dan 98.9%. Hubungan penghasilan kuasa
elektrik dan kecekapan rawatan telah berjaya dimodelkan dalam persamaan linear
matematik berdasarkan kepada tahap-tahap penghasilan kuasa elektrik ini.
Kata kunci: Air sisa kilang sawit; kuasa elektrik; model matematik;
rawatan air sisa;sel fuel mikrob
ABSTRACT
Microbial fuel cells (MFCs) are a device that utilises
microorganisms as a biocatalyst, to oxidize organic and inorganic matters to generate electric current. The main purpose of this
study was to evaluate laboratory scale MFC which was
inoculated with sludge containing mixed culture grown in palm oil mill effluent
(POME).
This work also aimed to construct a suitable design of MFC and to observe mixed
culture activation that could lead to electricity power production. POME was
used in diluted form with COD concentration of 3750 mg-COD L-1. The performance of
power generation and the efficiency of waste-water treatment in term of COD,
nitrogen and total carbohydrate removal, in dual chamber MFC were recorded and
analysed everyday for 15 days. The plots between experimental data and
polarization model fit well and are able to describe the ability of power
density generated in each day. Power density increased from 1.607 mW m-2 (3.816
mA m-2),
in the first day of the experiments to a maximum value on the third day 1.979
mW m-2 (4.780 mA m-2) and then slowed down in day seventh to a
minimum value of 1.311 mW m-2 (3.346 mA m-2). The removal
efficiency in MFC could be divided into three different levels. The first level is
in term of poor efficiency although the power was increasing, while in the
second level, the efficiency was getting higher and finally in third level,
power production of MFC started to diminish. The highest
efficiency occurs during the third level when steady power generation took
place at certain level. The treatment efficiency in term of COD removal, nitrogen and
carbohydrate utilization at day 15th were 54.9, 100 and 98.9%, respectively.
The relationship between electricity power generation and treatment efficiency
was successfully modelled into linear equation based on the respective power
generation levels.
Keywords: Electricity power; mathematic model; microbial
fuel cell; palm oil mill effluent (pome); wastewater treatment
REFERENCES
Ahmad, A.L., Chong, M.F., Bhatia, S. &
Ismail, S. 2006. Drinking water reclamation from palm oil mill effluent (POME)
using membrane technology. Desalination 191(1-3):
35-44.
Anantaraman, A.V. & Gardner, C.L. 1996. Studies on ion-exchange membranes. Part 1. Effect of humidity on the conductivity of Nafion®. Journal
of Electroanalytical Chemistry 414(2): 115-120.
Atlas, R.M. 2004. Handbook of Microbiological
Media. USA: CRC Press.
Behera,
M. & Ghangrekar, M.M. 2009. Performance of microbial fuel
cell in response to change in sludge loading rate at different anodic feed pH. Bioresource Technology 100(21): 5114-5121.
Chae,
K.-J., Choi, M.-J., Lee, J.-W., Kim, K.-Y. & Kim,
I.S. 2009. Effect of different substrates on the performance,
bacterial diversity, and bacterial viability in microbial fuel cells. Bioresource
Technology 100(14): 3518-3525.
Chan,
Y.J., Chong, M.F. & Law, C.L. 2010. Biological treatment
of anaerobically digested palm oil mill effluent (POME) using a Lab-Scale
Sequencing Batch Reactor (SBR). J. Environ. Manage. 91(8):
1738-1746.
Cheng,
J., Zhu, X., Ni, J. & Borthwick, A. 2010. Palm oil mill effluent treatment
using a two-stage microbial fuel cells system integrated with immobilized
biological aerated filters. Bioresource Technology 101(8): 2729-2734.
Jiang,
J., Zhao, Q., Zhang, J., Zhang, G. & Lee, D.-J.
2009. Electricity generation from bio-treatment of sewage
sludge with microbial fuel cell. Bioresource Technology 100(23):
5808-5812.
Lim, S.S., Daud, W.R.W., Jahim, J.M., Ghasemi, M., Chong,
P.S. & Ismail, M. 2012. Sulfonated poly(ether
ether ketone)/poly(ether sulfone) composite membranes as an alternative proton
exchange membrane in microbial fuel cells. International Journal of Hydrogen
Energy 37(15): 11409-11424.
Logan, B.E., Hamelers, B., Rozendal, R., Schröder, U.,
Keller, J., Freguia, S., Aelterman, P., Verstraete, W. & Rabaey, K. 2006. Microbial Fuel Cells: Methodology and Technology†. Environmental Science and
Technology 40(17): 5181-5192.
Ma, A.N. 1997. Effluent treatment -
evaporation method. PORIM Engineering News 44: 7-8.
Mahreni, A. 2009. The synthesis and
application of composite membrane as electrolyte in proton exchange membrane
fuel cell (PEMFC). Tesis Ph.D., Universiti Kebangsaan Malaysia (tidak
diterbitkan).
Moon, H., Chang, I.S., Jang, J.K. & Kim, B.H. 2005. Residence time distribution in microbial fuel cell and its
influence on COD removal with electricity generation. Biochemical
Engineering Journal 27(1): 59-65.
Morris, J.M., Jin, S., Wang, J., Zhu, C. & Urynowicz,
M.A. 2007. Lead dioxide as an alternative catalyst
to platinum in microbial fuel cells. Electrochemistry Communications 9(7):
1730-1734.
Oh,
S.T., Kim, J.R., Premier, G.C., Lee, T.H., Kim, C. & Sloan, W.T. 2010.
Sustainable wastewater treatment: how might microbial fuel cells contribute. Biotechnol.
Adv. 28(6): 871-881.
Picioreanu,
C., van Loosdrecht, M.C., Katuri, K.P., Scott, K. & Head, I.M. 2008. Mathematical model for
microbial fuel cells with anodic biofilms and anaerobic digestion. Water
Science and Technology 57(7): 965-971.
Poh,
P.E. & Chong, M.F. 2009. Development of anaerobic
digestion methods for palm oil mill effluent (POME) treatment. Bioresource
Technology 100(1): 1-9.
Rodrigo, M.A., Cañizares, P., Lobato, J., Paz, R., Sáez, C.
& Linares, J.J. 2007. Production of electricity from the
treatment of urban waste water using a microbial fuel
cell. Journal of Power Sources 169(1): 198-204.
Tay,
J.H. 1991. Complete reclamation of oil palm wastes. Resources,
Conservation and Recycling 5(4): 383-392.
Torres,
C.I., Kato Marcus, A. & Rittmann, B.E. 2008. Proton transport inside the
biofilm limits electrical current generation by anode-respiring bacteria. Biotechnology
and Bioengineering 100(5): 872-881.
Venkata Mohan, S., Veer Raghavulu, S., Srikanth, S. &
Sarma, P.N. 2007. Bioelectricity production by
mediatorless microbial fuel cell under acidophilic condition using wastewater
as substrate: Influence of substrate loading rate. Current Science 92(12):
7.
Vijayaraghavan, K., Ahmad, D. & Ezani Bin Abdul Aziz, M.
2007. Aerobic treatment of palm oil mill
effluent. Journal of Environmental Management 82(1):
24-31.
Wong,
Y.S., Kadir, M.O. & Teng, T.T. 2009. Biological kinetics
evaluation of anaerobic stabilization pond treatment of palm oil mill effluent. Bioresour. Technol. 100(21): 4969-4975.
*Corresponding
author; email: limss@ukm.my