Sains Malaysiana 41(1)(2012): 71–79

 

Optimal Physical and Nutrient Parameters for Growth of Trichoderma virens UKMP-1M for Heavy Crude Oil Degradation

(Pengoptimuman Parameter Fizikal dan Nutrien bagi Pertumbuhan Trichoderma virens UKMP-1M untuk Degradasi Minyak Mentah Berat)

 

Ainon Hamzah*, Mazni A. Buzarin, Aidil Abdul Hamid, O. Thmanomar & Sahidan Senafi

School of Biosciences and Biotechnology, Faculty of Science and Technology

University Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

Received: 11 October 2010 / Accepted: 7 June 2011

 

ABSTRACT

 

This study was carried out to determine the optimal parameters for the production of biomass of Trichoderma virens UKMP-1M, a fungus isolated from oil-polluted wastewater. The isolate showed maximum growth at day six after incubation in Mineral Salt Medium (MSM) in the presence of 3% (v/v) heavy Khefji Sour crude oil. Although it grew at pH between 5.0 and 7.0, it grew best at pH 5.5. T. virens UKMP-1M grew at temperatures between 25°C and 35°C, with its highest growth at 30°C. Aeration by agitation at 200 rpm was shown to yield the greatest biomass. Peptone at concentration of 1.5% (w/v) was determined to be a better nitrogen source than urea, potassium nitrate (KNO3), yeast extract, ammonium sulphate ((NH4)2SO4) and ammonium chloride (NH4Cl). Addition of 1% (v/v) crude oil to the MSM medium led to higher biomass production than the addition of 3%, 5%, 7% and 10% (v/v) crude oil. The result also revealed that 40% of total petroleum hydrocarbon (TPH), 100% of pristane and 74% of phytane compounds were degraded after 9 days of incubation at optimal physical and nutrient parameters.

 

Keywords: Crude oil; optimisation; total petroleum hydrocarbon; Trichoderma virens

 

 

 ABSTRAK

Kajian ini dijalankan untuk menentukan parameter optimum bagi menghasilkan biojisim Trichoderma virens UKMP-1M iaitu kulat yang dipencilkan daripada air kumbahan tercemar minyak. Pencilan tersebut menunjukkan pertumbuhan yang maksimum pada hari keenam selepas pengeraman di dalam medium garam mineral (MSM) dengan kehadiran 3% (i/i) minyak mentah berat Khefji Sour. Walaupun ia tumbuh pada pH antara 5.0 dan 7.0, namun ia tumbuh dengan terbaik pada pH 5.5. T. virens tumbuh pada suhu antara 250C dan 350C, dengan pertumbuhan tertinggi pada 30oC. Pengudaraan dengan cara penggoncangan pada 200 psm menunjukkan penghasilan biomass yang terbaik. Kepekatan pepton pada 1.5% (b/i) telah ditentukan sebagai sumber nitrogen yang terbaik berbanding urea, kalium nitrat (KNO3), ekstrak yis, ammonium sulfat ((NH4)2SO4) dan ammonium klorida (NH4Cl). Penambahan 1% (i/i) minyak mentah ke dalam medium MSM mengarah kepada penghasilan biojisim yang tertinggi berbanding penambahan 3%, 5%, 7% dan 10% minyak mentah. Hasil menunjukkan 40% komponen jumlah hidrokarbon petroleum (TPH), 100% sebatian  pristin dan 74% sebatian fitin telah didegradasikan selepas 9 hari pengeraman pada parameter fizikal dan nutrien optimum.

 

Kata kunci: Jumlah hidrokarbon petroleum; minyak mentah; pengoptimuman; Trichoderma virens

REFERENCES

 

Adejoye, O.D., Adebayo-Tayo, B.C., Ogunjobi, A.A., Olaoye, O.A. & Fadahunsi, F.I. 2006. Effect of carbon, nitrogen and mineral sources on growth of Pleurotus florida, a Nigeria edible mushroom. Afr. J. Biotechnol. 5(14): 1355-1359.

Atlas, R.M. 1995. Bioremediation of petroleum pollutants. Int. Biodeter Biodegr. 35: 317-327.

Balba, M.T., Al-Awadhi, N. & Al-Daher, R. 1998. Bioremediation of oil-contaminated soil: microbiological methods for feasibility assessment and field evaluation. J. Microbiol. Meth. 32: 155-164.

Bregnard, T.P.A., Haner, A., Hohener P. & Zeyer, J. 1997. Anaerobic degradation of pristane in nitrate-reducing microcosms and enrichment cultures. Appl. Environ. Microbiol. 63(5): 2077-2081.

Chaillan, F., Fleche, A.L., Bury, E., Phantavong, Y.H., Grimont, P., Saliot A. & Oudot, J. 2004. Identification and biodegradation potential of tropical aerobic hydrocarbon-degrading microorganisms. Res. Microbiol. 155: 587-595.

Chaîneau, C.H., Morel, J., Dupont, J., Bury. E. & Oudot, J. 1999. Comparison of the fuel oil biodegradation potential of hydrocarbon-assimilating microorganisms isolated from a temperate agricultural soil. Sci. Total. Environ. 227: 237-247.

Delille, D., Coulan F. & Pelletier, E. 2004. Effects of temperature warming during a bioremediation study of natural and nutrient-amended hydrocarbon-contaminated sub-Antarctic soils. Cold. Reg. Sci. Technol. 40: 61-70.

Djonović, S., Pozo, M.J., Dangott, L.J., Howell, C.R. & Kenerley, C.M. 2006. Sm1, a proteinaceous elicitor secreted by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance. Am. Phytopathol. Soc. 19(8): 838-853.

Hadibarata, T. & Tachibana, S. 2009. Microbial degradation of crude oil by fungi pre-grown on wood meal. Interdiscipl. Studies Environ. Chem. 317-322.

Haven, H.L.T., Rullkotter, J., de Leeuw, J.W. & Damsté, J.S.S. 1988. Pristane/phytane ratio as environmental indicator. Nature. 333: 604.

Head, I.M. & Swannell, R.P.J. 1999. Bioremediation of petroleum hydrocarbon contaminants in marine habitats. Curr. Opin. Biotech. 10: 234-239.

Hess, A., Hohener, P., Hunkeler, D. & Zeyer, J. 1996. Bioremediation of a diesel fuel contaminated aquifer: simulation studies in laboratory aquifer columns. J. Contam. Hydrol. 23: 329-345.

Jin, S. & Fallgren, P.H. 2007. Site-specific limitations of using urea as nitrogen source in biodegradation of petroleum wastes. Soil Sediment Contam. 16(5): 497-505.

Kendrick, A. & Ratledge, C. 1996. Cessation of polyunsaturated fatty acid formation in four selected filamentous fungi when grown on plant oil. J. Am. Oil. Chem. Soc. 73(4): 431-435.

Kim, S.W., Hwang, H.J., Xu, C.P, Choi, J.W. & Yun, J.W. 2003. Effect of aeration and agitation on the production of mycelial biomass and exopolysaccharides in an enthomopathogenic fungus Paecilomyces sinclairii. Appl. Microbiol. 36: 321-326.

Lee, K., Weise, A.M. & St-Pierre, S. 1996. Enhanced oil biodegradation with mineral fine interaction. Spill. Sci. Technol. B. 3: 263-267.

Mancera-López, M.E., Casasola, M.T.R., Leal, E.R., Garcia, F.E., Gómez, B.C., Vázquez, R.R. & Cortés, J.B. 2007. Fungi and bacterial isolated from two highly polluted soils for hydrocarbon degradation. Acta Chim Slov. 54: 201-209.

Mancera-López, M.E., Esparza-García, F., Chávez-Gómez, B., Rodríguez-Vázquez, R., Saucedo-Castañeda, G. & Barrera-Cortés, J. 2008. Bioremediation of an aged hydrocarbon-contaminated soil by a combined system of biostimulation-bioaugmentation with filamentous fungi. Int. Biodeter. Biodegr. 61: 151-160.

Mukherji, S., Jagadevan, S., Mohapatra, G. & Vijay, A. 2004. Biodegradation of diesel oil by an Arabian Sea sediment culture isolated from the vicinity of an oil field. Bioresource Technol. 95: 281-286.

Obire, O. & Anyanwu, E.C. 2009. Impact of various concentrations of crude oil on fungal populations of soil. Int. J. Environ. Sci. Tech. 6(2): 211-218.

Okerentugba, P.D. & Ezeronye, O.U. 2003. Petroleum degrading potentials of single and mixed microbial cultures isolated from rivers and refinery effluent in Nigeria. Afr. J. Biotechnol. 2: 288-292.

Purwanto, L.A., Ibrahim, D. & Sudrajat, H. 2009. Effect of agitation speed on morphological changes in Aspergillus niger hyphae during production of tannase. World J. Chem. 4(1): 34-38.

Ruiz-Aguilar, M.L.G., Fernández-Sánchez, Z.M. Rodríguez-Vázquez, R. & Poggi-Varaldo, H. 2002. Degradation by white-rot fungi of high concentrations of PCB extracted from a contaminated soil. Adv. Environ. Res. 6: 559-568.

Ryan, D., Leukes, W. & Burton, S. 2007. Improving the bioremediation of phenolic wastewaters by Trametes versicolor. Bioresource Technol. 98: 579-587.

Samuels, G.J., Chaverri, P., Farr, D.F. & McCray, E.B. 2007. Trichoderma Online, Systematic Mycology and Microbiology Laboratory, ARS, USDA. Available from: http://nt.ars-grin.gov/taxadescriptions/keys /TrichodermaIndex.cfm. [16 November 2008].

Santos, V.L. & Linardi, V.R. 2004. Biodegradation of phenol by a filamentous fungi isolated from industrial effluents-identification and degradation potential. Process. Biochem. 39: 1001-1006.

Shewfelt, K., Lee, H. & Zytner, R.G. 2005. Optimization of nitrogen for bioventing of gasoline contaminated soil. Environ. Eng. Sci. 4: 29-42.

Srivastava, S. & Thakur, I.S. 2006. Evaluation of bioremediation and detoxification potentiality of Aspergillus niger for removal of hexavalent chromium in soil microcosm. Soil. Biol. Biochem. 38: 1904-1911.

Trindade, P.V.O., Sobral, L.G., Rizzo, A.C.L., Leite, S.G.F. & Soriano, A.U. 2005.  Bioremediation of a weathered and a recently Oil-contaminated soils from Brazil: a comparison study. Chemosphere 58: 515-522.

Verdin, A., Sahraoui, A.L. & Durand, R. 2004. Degradation of benzo[a]pyrene by mitosporic fungi and extracellular oxidative enzymes. Int Biodeter. Biodegr. 53: 65-70.

Zajic, E. & Supplisson, B. 1972. Emulsification and degradation of “Bunker C” fuel oil by microorganisms. Biotechnol. Bioeng. 14: 31-43.

 

*Corresponding author; email: antara@ukm.my

 

 

previous