Sains
Malaysiana 41(2)(2012): 171–177
Fish Harvesting Management Strategies Using Logistic Growth
Model
(Strategi Pengurusan
Penuaian Ikan dengan MenggunakanModel Pertumbuhan Logistik)
Mohamed Faris Laham* &
Ishtrinayagy S. Krishnarajah
Laboratory of Computational
Sciences & Mathematical Physics, Institute for Mathematical Research
Universiti Putra
Malaysia, 43400 UPM Serdang,
Selangor D.E. Malaysia
Jamilah Mohd
Shariff
Faculty of
Computer & Mathematical Sciences, Universiti Teknologi MARA
40450 UiTM Shah
Alam, Selangor D.E. Malaysia
Received: 22
October 2010 / Accepted: 21 July 2011
ABSTRACT
This paper studies the
harvesting strategies for tilapia fish farming. Two logistic growth models have
been used namely constant harvesting and periodic harvesting. Even though
tilapia fish farming has been commercialized, the use of mathematical models in
determining harvesting strategies has not been widely applied in Malaysia.
Logistic growth model is appropriate for population growth of animal when overcrowding
and competition resources are taken into consideration. The objectives of this
study were to estimate the highest continuing yield from fish harvesting
strategies implemented. Secondly, the study predicted the optimum quantity for
harvesting that can ensure the tilapia fish supply is continuous. Finally, to
compare the results obtained between the two strategies. The best harvesting
strategy for the selected fish farm is periodic harvesting. These findings can
assist fish farmers to increase the supply to meet the demand for tilapia fish.
Keywords: Biomathematics;
fisheries; harvesting; logistic growth model; periodic
ABSTRAK
Makalah ini membincangkan
tentang strategi penuaian untuk penternakan ikan tilapia. Dua strategi
menggunakan model logistik iaitu strategi penuaian tetap dan strategi penuaian
berkala diketengahkan. Walaupun aktiviti penternakan ikan tilapia telah
dikomersilkan, namun penggunaan model matematik dalam menentukan strategi
penuaian berkesan tidak diaplikasikan di Malaysia. Strategi penuaian adalah
sangat penting dalam membantu penternak ikan untuk membekalkan keperluan ikan
tilapia kepada pengguna secara berterusan dan memastikan juga populasi ikan
tersebut berada dalam keadaan yang stabil. Objektif utama kajian ini adalah
untuk menentukan hasil penuaian yang berterusan daripada strategi penuaian yang
digunakan. Seterusnya, kajian juga ingin menganggarkan jumlah optimum untuk
penuaian ikan bagi memastikan sumber ikan dapat ditampung secara berterusan.
Akhir sekali, keputusan daripada dua strategi penuaian ini akan dibandingkan.
Strategi penuaian yang terbaik untuk penternakan ikan tilapia adalah penuaian
berkala. Penemuan kajian ini adalah diharap akan dapat membantu para penternak
ikan untuk meningkatkan bekalan ikan tilapia bagi memenuhi kehendak pengguna
dan pasaran.
Kata kunci: Berkala; biomatematik; model pertumbuhan logistik;
penuaian; perikanan
REFERENCES
Aanes
S., Engen S., Saethe, B-E., Willerbrand, T. & Marcstram, V. 2002. Sustainable
harvesting strategies of willow ptarmigan in a fluctuating environment.
Ecological Applications 12: 281-290.
Alan,
A.B. 1992. The origins and evolution of predator-prey theory. Ecology 73: 1530-1535.
Biswajit,
Mondal, Asoke, Kumar, Bhunia & Manoranjan, Maiti. 2007. Optimal two-species
harvesting policy with price and size. Applied Mathematics and Computation 187:
600-608.
Cooke,
K.L. & Nusse, H. 1987. Analysis of the complicated dynamics of some
harvesting models. Journal of Mathematical Biology 25: 521-542.
Dubey,
D., Peeyush, Chandra & Prawal, S. 2003. A Model for fishery resource with
reserve area. Nonlinear Analysis: Real World Applications 4: 625-637.
Gertjan, D.G.,
Pieter, J.D., Bram, H. & Johan A.J.V. 2005. Simulation of Nile tilapia
culture in ponds, through individual based modeling using a population dynamic
approach. Aquaculture Research 36: 455-471.
Idels, L.V. & Wang, M. 2008. Harvesting fisheries
management strategies with modified effort function. International Journal
Modelling, Identification and Control 3: 83-87.
Jing, W. &
Ke, W. 2004a. Optimal control of harvesting for single population. Applied
Mathematics and Computation 156: 235-247.
Jing, W. &
Ke, W. 2004b. The optimal harvesting problems of a stage-structured population. Applied Mathematics and Computation 148: 235-247.
John, W.,
Pamela, M. & Eric, T. 2005. The relationship of fish harvesting capacity to
excess capacity and overcapacity. Marine Resource Economics 19: 525-529.
Li, W. &
Wang, K. 2010. Optimal harvesting policy for general stochastic logistic
population model. Journal of Mathematical Analysis and Applications 368:
420-428.
Ludwig, D. 2001.
A theory of sustainable harvesting. SIAM. J. On Appl. Math. 55:
564-575.
Malaysia
Fisheries Department. 2008, retrieved from www.dof.gov.my.
Michel, I.D.S.C.
2007. Harvesting induced fluctuations: insights from a threshold management
policy. Mathematical Biosciences 205: 77-82.
Murray, J.D.
1993. Mathematical Biology 1: An Introduction. USA: Springer Verlag.
Thomas, P. &
Michael, M. 1999. Tilapia life history and Biology. Southern Regional
Aquaculture Center 283.
*Corresponding author; email: mohdfaris@putra.upm.edu.my
|