Sains Malaysiana 41(2)(2012): 205–211

 

Physicochemical Properties and Characterization of Nata de Coco from

Local Food Industries as a Source of Cellulose

(Sifat Fizikokimia dan Pencirian Nata de Coco daripada Industri Makanan

Tempatan Sebagai Sumber Selulosa)

 

 

Nadia Halib

Bahagian Teknologi Perubatan, Agensi Nuklear Malaysia, Bangi, 43000 Kajang, Selangor

Malaysia

 

Mohd Cairul Iqbal Mohd Amin*

Fakulti Farmasi, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz

50300 Kuala Lumpur, Malaysia

 

Ishak Ahmad

Pusat Pengajian Sains Kimia dan Teknologi Makanan, Fakulti Sains dan Teknologi

Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor

Malaysia

 

Received: 13 April 2011 / Accepted: 1 August 2011

 

 

ABSTRACT

 

Nata de coco, a dessert originally from the Philippines is produced by fermentation of coconut water with a culture of Acetobacter xylinum, a gram negative bacterium. Acetobacter xylinum metabolizes glucose in coconut juice and converts it into bacterial cellulose that has unique properties including high purity, crystallinity and mechanical strength. Because the main component of nata de coco is bacterial cellulose, nata de coco was purified, extracted and characterized to determine whether pure cellulose could be isolated from it. The FTIR spectra of bacterial cellulose from nata de coco showed distinguish peaks of 3440 cm-1, 2926 cm-1, 1300 cm-1, 1440 cm-1, 1163 cm-1 and 1040 cm-1, which correspond to O-H stretching, C-H stretching, C-H bending, CH2 bending, C-O-C stretching and C-O stretching, respectively, and represent the fingerprints of pure cellulose component. Moreover, the FTIR curve showed a pattern similar to other bacterial cellulose spectra reported by report. Thermal analysis showed a DTG peak at 342°C, which falls in the range of cellulose degradation peaks (330°C - 370°C). On the other hand, the TGA curve showed 1 step of degradation, and this finding confirmed the purity of nata de coco. Bacterial cellulose powder produced from nata de coco was found to be soluble only in cupriethylenediamine, a well known solvent for cellulose; thus, it was confirmed that nata de coco is a good source of bacterial cellulose. The purity of bacterial cellulose produced from nata de coco renders it suitable for research that uses pure cellulose.

 

Keywords: Acetobacter xylinum; bacterial cellulose; FTIR; nata de coco

 

 

ABSTRAK

 

Nata de coco merupakan hidangan pencuci mulut tempatan yang berasal dari Filipina. Ia dihasilkan melalui proses fermentasi air kelapa bersama kultur bakteria Acetobacter xylinum yang merupakan bakteria Gram negatif. Acetobacter xylinum memetabolismekan glukosa dalam air kelapa kepada selulosa bakteria yang mempunyai ciri-ciri unik seperti ketulenan yang tinggi, kehabluran dan kekuatan mekanikal yang tinggi. Memandangkan kandungan utama nata de coco adalah selulosa bakteria, ia ditulenkan, diekstrak dan seterusnya dilakukan pencirian untuk memastikan kandungan selulosanya. Hasil analisis FTIR nata de coco menunjukkan kehadiran puncak-puncak pada 3440 cm-1, 2926 cm-1, 1300 cm-1, 1440 cm-1, 1163 cm-1 dan 1040 cm-1 yang masing-masing merujuk kepada regangan O-H, regangan C-H, bengkokan C-H, bengkokan CH2, regangan C-O-C dan regangan C-O yang merupakan cap jari bagi sebatian selulosa tulen. Selain itu corak lengkukan spektra FTIR nata de coco juga menepati corak lengkukan spektra selulosa bakteria yang telah dilaporkan oleh penyelidik terdahulu. Kajian termal pula mendapati puncak pada graf DTG adalah 342°C, menepati julat suhu penguraian termal selulosa (330°C - 370°C) sebagaimana yang dilaporkan sebelum ini. Graf TGA pula menunjukkan nata de coco hanya mempunyai satu langkah penguraian dan membuktikan ianya terdiri daripada satu sebatian tulen. Serbuk nata de coco yang dihasilkan juga didapati hanya larut dalam kuprum (II) etilenadiamina, iaitu pelarut bagi selulosa seterusnya membuktikan bahawa nata de coco adalah sumber selulosa bakteria yang baik. Ketulenan selulosa bakteria yang dihasilkan menjadikan ia bahan yang sesuai di dalam penyelidikan yang menggunakan selulosa tulen.

 

Kata kunci: Acetobacter xylinum; FTIR; nata de coco; selulosa bacteria

 

REFERENCES

Arseneau, F.D. 1971. Competitive Reaction in the Thermal Decomposition of Cellulose. Canadian Journal of Chemistry 49: 632-638.

Bäckdahl, H., Helenius, G., Bodin, A., Nannmark, U., Johansson, B.R., Risberg, B. & Gatenholm, P. 2006. Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27: 2141-2149.

Ben-Hayyim, G. & Ohad, I. 1965. Synthesis of cellulose by Acetobacter xylinum. VIII. On the Formation and Orientation of Bacterial Cellulose Fibrils in the Presence of Acidic Polysaccharides. The Journal of Cell Biology 25: 191-207.

Bono, A., Ying, P.H., Yan, F.Y., Muei, C.L., Sarbatly, R. & Krishnaiah, D. 2009. Synthesis and Characterization of Carboxymethyl Cellulose from Palm Kernal Cake. Advances in Natural and Applied Sciences 3(1): 5-11.

Bottom, R. 2008. Chapter 3 - Thermogravimetric Analysis. In Gabbott, P. (editor) Principles and Applications of Thermal Analysis, UK. Blackwell Publishing. pp 87-118.

Brown, R.M., Jr. 2004. Cellulose Structure and Biosynthesis: What is on the store for the 21st Century? Journal of Polymer Science: Part A: Polymer Chemistry 42(3): 487-495.

Cannon, R.E. & Anderson, S.M. 1991. Biogenesis of Bacterial Cellulose. Critical Reviews in Microbiology 17(6): 435-447.

Charpentier, P.A., Maguire, A. & Wan, W.K. Surface modification of polyester to produce bacterial cellulose-based vascular prosthetic device. Applied Surface Science 252: 6360-6367.

Czaja, W., Krystynowicz, A., Bielecki, S. & Brown Jr, R.M. 2006. Microbial cellulose-the natural power to heal wounds. Biomaterials 27: 145-151.

Fontana, J.D., de Souza, A.M., Fontana, C.K., Torriani, I.L., Moreschi, J.C., Gallotti, B.J., de Souza, S.J., Narcisco, G.P., Bichara, J.A. & Farah, L.F.X. 1990. Acetobacter Cellulose Pellicle as a Temporary Skin Substitute. Applied Biochemistry and Biotechnology 24/25: 253-264.

Halib, N., Amin, M.C.I., Ahmad, I, Hashim, Z& Jamal, N. 2009. Swelling of Bacterial Cellulose-Acrylic Acid Hydrogels: Sensitivity Towards External Stimuli. Sains Malaysiana 38(5): 785-791.

Halib, N., Amin, M.C.I. & Ahmad, I. 2010. Unique Stimuli Responsive Characteristics of Electron Beam Synthesized Bacterial Cellulose/Acrylic Acid Composite, Journal of Applied Polymer Science 116: 2920-2929.

Hult, E., Yamanaka, S., Ishihara, M. & Sugiyama, J. 2003. Aggregation of ribbons in bacterial cellulose induced by high pressure incubation. Carbohydrate Polymers 53: 9-14.

Iguchi, M., Yamanaka, S. &Budhiono, A. 2000. Review Bacterial Cellulose - a masterpiece of nature’s arts. Journal of Materials Science 35: 261-270.

Johnson, D.C. 1985. Solvents for cellulose. In Nevell, T.P & Zeronian, S.H. (ed.) Cellulose Chemistry and its Applications New York: Ellis Horwood Limited.

Jonas, R. & Farah, L.F. 1998. Production and application of microbial cellulose. Polymer Degradation and Stability 59: 101-106.

Kilzer, F.J. & Broido, A. 1965. Speculations on the nature of cellulose pyrolysis. Pyrodynamics 2: 151-163.

Marchessault, R.H. & Sundararajan, P.R. 1983. Cellulose. In Aspinall G.O. (editor) The Polysaccharides, Volume 2, page 12-95. New York: Academic Press, Inc.

Nishi, Y., Uryu, M., Yamanaka, S., Watanabe, K., Kitamura, N., Iguchi, M. & Mitsuhashi, S. 1990. The structure and mechanical properties of sheets prepared from bacterial cellulose. Part II Improvement of the mechanical properties of sheets and their applicability to diaphragms of electroacoustic transducers. Journal of Materials Science 25: 2997-3001.

Parthiban, K., Manikandan, S. & Ganesapandian, S. 2011. Production of Cellulose I Microfibrils from Rhizobium sp. and its Wound Healing Activity on Mice. Asian Journal of Applied Sciences 4(3): 247-254.

Ramírez-Flores, J., Rubio, E., Rodríguez-Lugo, V. & Castaño, V.M. 2009. Purification of polluted waters by funtionalized membranes. Reviews on Advanced Materials Science 21: 211-216.

Reeves, R. 1951. Cuprammonium-glycoside complexes. In Hudson, C.S. & Cantor, S.M. (editor) Advances in Carbohydrate Chemistry. New York: Academic Press Inc.

Shah, J. & Brown, R.M., Jr. 2005. Towards electronic displays made from microbial cellulose. Applied Microbiology and Biotechnology 66(4): 352-355.

Silva, A.A. 1996. Molecular weight distribution analysis of wood pulp cellulose by size exclusion chromatography. Ph.D Thesis. Oregon State University (unpublished).

Soares, S., Camino, G. & Levchik, S. 1995. Comparative study of the thermal decomposition of pure cellulose and pulp paper. Polymer Degradation and Stability 49: 275-283.

Stana-Kleinschek, K., Kreze, T., Ribitsch, V. & Strnad, S. 2001. Reactivity and electrokinetical properties of different types of regenerated cellulose fibres. Colloids and Surfaces A: Physicochemical and Engineering Aspects 195: 275-284.

Sun, J.X., Xu, F., Sun, X.F., Xiao, B. & Sun, R.C. 2005. Physico-chemical and thermal characterization of cellulose from barley straw. Polymer Degradation and Stability 88: 521-531.

Surma-Ślusarska, B., Presler, S. & Danielewicz, D. 2008. Characteristics of Bacterial Cellulose Obtained from Acetobacter Xylinum Culture for Application in Papermaking. Fibres & Textile in Eastern Europe 16(69): 108-111.

Trcek, J. 2005. Quick identification of acetic acid bacteria based on nucleotide sequences of the 16S-23S rDNA internal transcribed spacer region and of the PQQ-dependent alcohol dehydrogenase gene. Systematic and Applied Microbiology 28(8): 735-745.

Yamanaka, S., Watanabe, K., Kitamura, N., Iguchi, M., Mitsuhashi, S., Nishi, Y. & Uryu, M. 1989. The structure and mechanical properties of sheets prepared from bacterial cellulose. Journal of Materials Science 24: 3141-3145.

 

 

*Corresponding author; email: mciamin@pharmacy.ukm.my

 

 

 

previous