Sains Malaysiana 41(2)(2012): 205–211
Physicochemical Properties and
Characterization of Nata de Coco from
Local Food Industries as a Source of
Cellulose
(Sifat Fizikokimia
dan Pencirian Nata de Coco daripada Industri Makanan
Tempatan Sebagai
Sumber Selulosa)
Nadia
Halib
Bahagian
Teknologi Perubatan, Agensi Nuklear Malaysia, Bangi, 43000 Kajang, Selangor
Malaysia
Mohd
Cairul Iqbal Mohd Amin*
Fakulti
Farmasi, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz
50300
Kuala Lumpur, Malaysia
Ishak
Ahmad
Pusat
Pengajian Sains Kimia dan Teknologi Makanan, Fakulti Sains dan Teknologi
Universiti
Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor
Malaysia
Received:
13 April 2011 / Accepted: 1 August 2011
ABSTRACT
Nata de coco, a dessert
originally from the Philippines is produced by fermentation of coconut water
with a culture of Acetobacter xylinum, a gram negative bacterium. Acetobacter
xylinum metabolizes glucose in coconut juice and converts it into bacterial
cellulose that has unique properties including high purity, crystallinity and
mechanical strength. Because the main component of nata de coco is
bacterial cellulose, nata de coco was purified, extracted and
characterized to determine whether pure cellulose could be isolated from it.
The FTIR spectra of bacterial cellulose from nata de coco showed distinguish peaks of 3440 cm-1, 2926 cm-1,
1300 cm-1, 1440 cm-1, 1163 cm-1 and
1040 cm-1, which correspond to O-H stretching, C-H stretching,
C-H bending, CH2 bending, C-O-C stretching and C-O
stretching, respectively, and represent the fingerprints of pure cellulose
component. Moreover, the FTIR curve showed a pattern similar to
other bacterial cellulose spectra reported by report. Thermal analysis showed a DTG peak at 342°C, which falls in the range of cellulose degradation
peaks (330°C - 370°C). On the other hand, the TGA curve
showed 1 step of degradation, and this finding confirmed the purity of nata
de coco. Bacterial cellulose powder produced from nata de coco was
found to be soluble only in cupriethylenediamine, a well known solvent for
cellulose; thus, it was confirmed that nata de coco is a good source of
bacterial cellulose. The purity of bacterial cellulose produced from nata
de coco renders it suitable for research that uses pure cellulose.
Keywords: Acetobacter
xylinum; bacterial cellulose; FTIR; nata de coco
ABSTRAK
Nata de coco merupakan
hidangan pencuci mulut tempatan yang berasal dari Filipina. Ia dihasilkan
melalui proses fermentasi air kelapa bersama kultur bakteria Acetobacter
xylinum yang merupakan bakteria Gram negatif. Acetobacter xylinum memetabolismekan
glukosa dalam air kelapa kepada selulosa bakteria yang mempunyai ciri-ciri unik
seperti ketulenan yang tinggi, kehabluran dan kekuatan mekanikal yang tinggi.
Memandangkan kandungan utama nata de coco adalah selulosa bakteria, ia
ditulenkan, diekstrak dan seterusnya dilakukan pencirian untuk memastikan
kandungan selulosanya. Hasil analisis FTIR nata de coco menunjukkan kehadiran
puncak-puncak pada 3440 cm-1, 2926 cm-1,
1300 cm-1, 1440 cm-1, 1163 cm-1 dan
1040 cm-1 yang masing-masing merujuk kepada regangan O-H,
regangan C-H, bengkokan C-H, bengkokan CH2, regangan C-O-C dan regangan
C-O yang merupakan cap jari bagi sebatian selulosa tulen. Selain itu corak
lengkukan spektra FTIR nata de coco juga menepati corak
lengkukan spektra selulosa bakteria yang telah dilaporkan oleh penyelidik
terdahulu. Kajian termal pula mendapati puncak pada graf DTG adalah
342°C, menepati julat suhu penguraian termal selulosa (330°C - 370°C)
sebagaimana yang dilaporkan sebelum ini. Graf TGA pula
menunjukkan nata de coco hanya mempunyai satu langkah penguraian dan
membuktikan ianya terdiri daripada satu sebatian tulen. Serbuk nata de coco yang dihasilkan juga didapati hanya larut dalam kuprum (II) etilenadiamina,
iaitu pelarut bagi selulosa seterusnya membuktikan bahawa nata de coco adalah
sumber selulosa bakteria yang baik. Ketulenan selulosa bakteria yang dihasilkan
menjadikan ia bahan yang sesuai di dalam penyelidikan yang menggunakan selulosa
tulen.
Kata kunci: Acetobacter xylinum; FTIR; nata de coco;
selulosa bacteria
REFERENCES
Arseneau, F.D. 1971.
Competitive Reaction in the Thermal Decomposition of Cellulose. Canadian
Journal of Chemistry 49: 632-638.
Bäckdahl, H.,
Helenius, G., Bodin, A., Nannmark, U., Johansson, B.R., Risberg, B. &
Gatenholm, P. 2006. Mechanical properties of bacterial cellulose and
interactions with smooth muscle cells. Biomaterials 27: 2141-2149.
Ben-Hayyim, G. & Ohad,
I. 1965. Synthesis of cellulose by Acetobacter xylinum. VIII. On the Formation
and Orientation of Bacterial Cellulose Fibrils in the Presence of Acidic
Polysaccharides. The Journal of Cell Biology 25: 191-207.
Bono, A., Ying, P.H.,
Yan, F.Y., Muei, C.L., Sarbatly, R. & Krishnaiah, D. 2009. Synthesis and
Characterization of Carboxymethyl Cellulose from Palm Kernal Cake. Advances
in Natural and Applied Sciences 3(1): 5-11.
Bottom, R. 2008.
Chapter 3 - Thermogravimetric Analysis. In Gabbott, P. (editor) Principles
and Applications of Thermal Analysis, UK. Blackwell Publishing. pp 87-118.
Brown, R.M., Jr.
2004. Cellulose Structure and Biosynthesis: What is on the store for the 21st
Century? Journal of Polymer Science: Part A: Polymer Chemistry 42(3):
487-495.
Cannon, R.E. &
Anderson, S.M. 1991. Biogenesis of Bacterial Cellulose. Critical Reviews in
Microbiology 17(6): 435-447.
Charpentier, P.A.,
Maguire, A. & Wan, W.K. Surface modification of polyester to produce
bacterial cellulose-based vascular prosthetic device. Applied Surface
Science 252: 6360-6367.
Czaja, W.,
Krystynowicz, A., Bielecki, S. & Brown Jr, R.M. 2006. Microbial
cellulose-the natural power to heal wounds. Biomaterials 27: 145-151.
Fontana, J.D., de
Souza, A.M., Fontana, C.K., Torriani, I.L., Moreschi, J.C., Gallotti, B.J., de
Souza, S.J., Narcisco, G.P., Bichara, J.A. & Farah, L.F.X. 1990.
Acetobacter Cellulose Pellicle as a Temporary Skin Substitute. Applied
Biochemistry and Biotechnology 24/25: 253-264.
Halib, N., Amin,
M.C.I., Ahmad, I, Hashim, Z& Jamal, N. 2009. Swelling of Bacterial
Cellulose-Acrylic Acid Hydrogels: Sensitivity Towards External Stimuli. Sains
Malaysiana 38(5): 785-791.
Halib, N., Amin,
M.C.I. & Ahmad, I. 2010. Unique Stimuli Responsive Characteristics of
Electron Beam Synthesized Bacterial Cellulose/Acrylic Acid Composite, Journal
of Applied Polymer Science 116: 2920-2929.
Hult, E., Yamanaka,
S., Ishihara, M. & Sugiyama, J. 2003. Aggregation of ribbons in bacterial
cellulose induced by high pressure incubation. Carbohydrate Polymers 53:
9-14.
Iguchi, M., Yamanaka,
S. &Budhiono, A. 2000. Review Bacterial Cellulose - a masterpiece of
nature’s arts. Journal of Materials Science 35: 261-270.
Johnson, D.C. 1985. Solvents for
cellulose. In Nevell, T.P & Zeronian, S.H. (ed.) Cellulose Chemistry and
its Applications New York: Ellis Horwood Limited.
Jonas, R. & Farah, L.F. 1998.
Production and application of microbial cellulose. Polymer Degradation and
Stability 59: 101-106.
Kilzer, F.J. & Broido, A.
1965. Speculations on the nature of cellulose pyrolysis. Pyrodynamics 2:
151-163.
Marchessault, R.H. &
Sundararajan, P.R. 1983. Cellulose. In Aspinall G.O. (editor) The
Polysaccharides, Volume 2, page 12-95. New York: Academic Press, Inc.
Nishi, Y., Uryu, M., Yamanaka,
S., Watanabe, K., Kitamura, N., Iguchi, M. & Mitsuhashi, S. 1990. The
structure and mechanical properties of sheets prepared from bacterial
cellulose. Part II Improvement of the mechanical properties of sheets and their
applicability to diaphragms of electroacoustic transducers. Journal of
Materials Science 25: 2997-3001.
Parthiban, K., Manikandan, S.
& Ganesapandian, S. 2011. Production of Cellulose I Microfibrils from
Rhizobium sp. and its Wound Healing Activity on Mice. Asian Journal of
Applied Sciences 4(3): 247-254.
Ramírez-Flores, J., Rubio, E.,
Rodríguez-Lugo, V. & Castaño, V.M. 2009. Purification of polluted waters by
funtionalized membranes. Reviews on Advanced Materials Science 21:
211-216.
Reeves, R. 1951.
Cuprammonium-glycoside complexes. In Hudson, C.S. & Cantor, S.M. (editor) Advances
in Carbohydrate Chemistry. New York: Academic Press Inc.
Shah, J. & Brown, R.M., Jr.
2005. Towards electronic displays made from microbial cellulose. Applied
Microbiology and Biotechnology 66(4): 352-355.
Silva, A.A. 1996. Molecular
weight distribution analysis of wood pulp cellulose by size exclusion
chromatography. Ph.D Thesis. Oregon State University (unpublished).
Soares, S., Camino, G. &
Levchik, S. 1995. Comparative study of the thermal decomposition of pure
cellulose and pulp paper. Polymer Degradation and Stability 49: 275-283.
Stana-Kleinschek, K., Kreze, T.,
Ribitsch, V. & Strnad, S. 2001. Reactivity and electrokinetical properties
of different types of regenerated cellulose fibres. Colloids and Surfaces A:
Physicochemical and Engineering Aspects 195: 275-284.
Sun, J.X., Xu, F., Sun, X.F.,
Xiao, B. & Sun, R.C. 2005. Physico-chemical and thermal characterization of
cellulose from barley straw. Polymer Degradation and Stability 88:
521-531.
Surma-Ślusarska, B., Presler,
S. & Danielewicz, D. 2008. Characteristics of Bacterial Cellulose Obtained
from Acetobacter Xylinum Culture for Application in Papermaking. Fibres
& Textile in Eastern Europe 16(69): 108-111.
Trcek, J. 2005. Quick
identification of acetic acid bacteria based on nucleotide sequences of the
16S-23S rDNA internal transcribed spacer region and of the PQQ-dependent
alcohol dehydrogenase gene. Systematic and Applied Microbiology 28(8):
735-745.
Yamanaka, S., Watanabe, K.,
Kitamura, N., Iguchi, M., Mitsuhashi, S., Nishi, Y. & Uryu, M. 1989. The
structure and mechanical properties of sheets prepared from bacterial
cellulose. Journal of Materials Science 24: 3141-3145.
*Corresponding author; email: mciamin@pharmacy.ukm.my
|