Sains Malaysiana 41(2)(2012): 219–224

 

Inactivation of Escherichia coli Under Fluorescent Lamp using TiO2

Nanoparticles Synthesized Via Sol Gel Method

(Penyahaktifan Escherichia coli di bawah Lampu Pendarfluor Menggunakan

Nanozarah TiO2 yang Disintesis Melalui Kaedah Sol Gel)

 

 

Sapizah Rahim & Shahidan Radiman*

School of Applied Physics, Faculty of Science & Technology

Universiti Kebangsaan Malaysia, 43600 UKM  Bangi, Selangor D.E. Malaysia

 

Ainon Hamzah

School of Biosciences and Biotechnology, Faculty of Science & Technology

Universiti Kebangsaan Malaysia, 43600 UKM  Bangi, Selangor D.E. Malaysia

 

Received: 30 March 2011 /Accepted: 1 August 2011

 

ABSTRACT

 

Titanium dioxide nanoparticles were synthesized by using sol gel method and their physico-chemical properties were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and UV-Vis spectrophotometer. The photocatalytic property of TiO2 nanoparticles was investigated by inactivation of Escherichia coli under irradiation of fluorescent lamp. The results showed that the size of TiO2 was in the range of 3 to 7 nm with high crystallinity of anatase phase. The sharp peaks in FTIR spectrum determined the purity of TiO2 nanoparticles and absorbance peak of UV-Vis spectrum showed the energy band gap of 3.2 eV. Optimum inactivation of E. coli was obtained at 1.0 g/L TiO2 nanoparticles, with 80% of E. coli population was inactivated. The light scattering effect and insufficient concentration are the factors that cause the less effective inactivation reaction for 2.5 g/L and 0.1 g/L TiO2 concentration.

 

Keywords: E. coli; photocatalyst; sol gel; TiO2 nanoparticles

 

ABSTRAK

Nanozarah titanium dioksida telah disintesis dengan menggunakan kaedah sol gel dan sifat fizik-kimia telah dicirikan dengan menggunakan mikroskop transmisi elektron (TEM), pembelauan sinar-X (XRD), spektroskopi inframerah transformasi Fourier (FTIR) dan UV-Vis spektrofotometer. Sifat fotomangkin nanozarah TiO2 telah dikaji terhadap penyahaktifan Escherichia coli di bawah sinaran lampu pendarflour. Hasil kajian menunjukan saiz nanozarah TiO2 adalah dalam julat 3 ke 7 nm dengan habluran fasa anatase yang tinggi. Puncak tajam pada spectrum FTIR menunjukan ketulenan nanozarah TiO2 dan serapan UV-Vis menunjukan jurang petala tenaga adalah 3.2 eV. Penyahaktifan E. coli yang optimum diperolehi pada 1.0 g/L kepekatan TiO2 dengan 80% populasi E. coli dinyahaktifkan. Kesan serakan cahaya dan kepekatan yang tidak mencukupi adalah faktor kepada kurang efektif tindak balas penyahaktifan pada 0.1 g/L dan 2.5 g/L kepekatan TiO2.

 

Kata kunci: E. coli; fotomangkin; nanozarah TiO2; sol gel

 

REFERENCES

 

Ainon Hamzah, Amir Rabu, Raja Farzarul Hanim Raja Azmy & Noor Aini Yussoff. 2010. Isolation and characterization of bacteria degrading sumandak and south angsi oils. Sains Malaysiana 39(2): 161-168.

Anwar, N.S., Kassim, A., Lim, H.N., Zakarya, S.A. & Huang, N.M. 2010. Synthesis of TiO2 nanoparticles via sucrose ester micelle-mediated hydrothermal processing route. Sains Malaysiana 39: 2-4.

Benabbou, A.K., Derriche, Z., Felix, C., Lejeune, P. & Guillard, C. 2007. Photocatalytic inactivation of Escherichia coli, effect of concentration of titanium dioksida and microorganism, nature and intensity of UV irradiation. Applied Catalyst B: Environmental 76: 257-263.

Calandra, P., Goffredi, M. & Liveri, V.T. 1999. Study of the growth of ZnS nanoparticles in water/AOT/n-heptane microemulsions by UV-absorption spectroscopy. Colloids and Surface A 160: 9-13.

Carp, O., Huisman, C.L. & Reller, A. 2004. Photoinduced reactivity of TiO2. Progress Solid State Chemistry 32: 133-177.

Coleman, H.M., Marquis, C.P., Scott, J.A., Chin, S.S. & Amal, R. 2005. Bacterial effects of TiO2-based photocatalyst. Chemical Engineering Journal 113: 55-63.

Fujishima, A., Rao, T.N. & Tryk, D.A. 2000. Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 1: 1-12.

Grieken, R., Marugan, J., Sordo, C. & Pablos, C. 2009. Comparison of the photocatalyticc disinfection of E. coli suspensions in slurry, wall and fixed-bed reactors. Catalysis Today 144(1-2): 48-54.

Han, S., Choi, S.-H., Kim, S.-S., Cho, M., Jang, B., Kim, D.-Y., Yoon, J. & Hyeon, T. 2005. Low-temperature synthesis of highly crystalline TiO2 nanocrystals and their application to photocatalysis. Small 1: 812-816.

Jacoby, W.A., Maness, B.C., Wolfrum, E.J., Blake, D.M. & Fennell, J.A. 1998. Mineralization of bacterial cell mass on a photocatalytic surface in air. Environmental Science and Technology 32: 2650-2653.

Ji, L.Y., Yuan, M.M., Xiaohu, W. & Xiaohua, W. 2008. Inactivated properties of activated carbon-supported TiO2 nanoparticles for bacteria and kinetic study. Journal of Environmental Sciences 20: 1527-1533.

Jitputti, J., Rattanavoravipa, T., Chuangchote, S., Pavasupree, S., Suzuki, Y. & Yoshikawa, S. 2009. Low temperature hydrothermal synthesis of monodispersed flower-like titanate nanosheets. Catalysis Communications 10: 378-382.

Kanna, M. & Wongnawa, S. 2008. Mixed amorphous and nanocrystalline TiO2 powders prepared by sol-gel method: Characterization and photocatalytic study. Materials Chemistry and Physics 110: 166-175.

Kao, L.H., Hsu, T.C. & Lu, H.Y. 2007. Sol–gel synthesis and morphological control of nanocrystalline TiO2 via urea treatment. Journal of Colloid and Interface Science 316: 160-167.

Kikuchi, Y., Sunada, K., Iyoda, T., Hashimoto, K. & Fujishima, A. 1997. Photocatalytic bactericidal effect of TiO2 thin films: Dynamic view of the active oxygen species responsible for the effect. Journal of Photochemistry and Photobiology A: Chemistry 106: 51-56.

Kuhn, K.P., Chaberny, I.F., Massholder, K., Sticker, M., Benz, V.W., Sonntag, H.G. & Erdinger, L. 2003. Disinfection of surfaces by photocatalytic oxidation with TiO2 and UVA light. Chemosphere 53: 71-77.

Lee, K.M., Hu, C.W., Chen, H.W. & Ho, K.C. 2008. Incorporating carbon nanotube in a low-temperature fabrication process for dye-sensitized TiO2 solar cells. Solar Energy Materials & Solar Cells 92: 1628-1633.

Li, G., Li., L., Boerio-Goates, J. & Woodfield, B.F. 2005. High purity anatase TiO2 nanocrystals: Near room-temperature synthesis, grain growth kinetics, and surface hydration chemistry. Journal of the American Chemistry Society 24: 8659-8666.

Liu, X.H., Yang, J., Wang, L., Yang, X., Lu, L. & Wang, X. 2000. An improvement on sol-gel method for preparing ultrafine and crystallized titania powder. Materials Science and Engineering 289: 241-245.

Mahshid, S., Askar, M. & Sasani Ghamsari, M. 2007. Synthesis of TiO2 nanoparticels by hydrolysis and peptization of titanium isopropoxide solution. Journal of Materials Processing Technology 198: 296-300.

Matsunaga, T., Tomoda, R., Nakajima, T. & Wake, H. 1985. Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiol Letter 29: 211-214.

Mizukoshi, Y., Makise, Y., Shuto, T., Hu, J., Tominaga, A., Shironita, S. & Tanabe, S. 2007. Immobilization of noble metal nanoparticles on the surface of TiO2 by the sonochemical method: Photocatalytic production of hydrogen from an aqueous solution of ethanol. Ultrasonics Sonochemistry 14: 387-392.

Mohammadia, M.R., Fray, D.J. & Cordero-Cabrera, M.C. 2007. Sensor performance of nanostructured TiO2 thin films derived from particulate sol–gel route and polymeric fugitive agents. Sensors and Actuators B 124: 74-83.

Nga, P.C., Denga, C.S., Gub, M.G. & Dai, X.M. 2008. Effect of urea on the photoactivity of titania powder prepared by sol–gel method. Materials Chemistry and Physics 107: 77-81.

Sartale, S.D. & Lokhande, C.D. 2000. Growth of copper sulphide thin films by successive inonic layer adsorption and reaction (SILAR) method. Materials Chemistry and Physics 65: 63-67

Seo, J.-W., Chung, H.-W., Kim, M.-Y., Lee, J.& Cheon ,J.-W. 2007. Development of water-soluble single crystalline TiO2 nanoparticles for photocatalytic cancer cell treatment. Photocatalysis Communication 5: 850-853.

Seven, O., Dindar, B., Aydemir, S., Metin, D., Ozinel, M.A. & Icli, S. 2004. Solar photocatalytic disinfection of a group of bacteria and fungi aqueous suspensions with TiO2, ZnO and Sahara desert dust. Journal of Photochemistry and Photobiology A: Chemistry 165: 103-107.

Sunada, K., Kikuchi, Y., Hashimoto, K. & Fujishima, A. 1998. Bactericidal and detoxification effects of TiO2 thin film photocatalyst. Environmental Science and Technology 32: 726-728.

Sunada, K., Watanabe, T. & Hashimoto, K. 2003. Studies on photokilling of bacteria on TiO2 thin film. Journal of Photochemical and Photobiology A:Chemistry 156: 227-233.

Thevenot, P., Cho, J., Wavhal, D., Timmons, R.B. & Tang, L. 2008. Surface chemistry influences cancer killing effect of TiO2 nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine 4: 226-236.

Trung, T. & Ha, C.S. 2004. One-component solution system to prepare nanometric anatase TiO2. Materials Science and Engineering 24: 19-22.

Velasco, M.J., Rubio, F., Rubia, J. & Oteo, J.L. 1999. Hydrolysis of titanium tetrabutoxide study by FTIR spectroscopy. Thermochemistry Acta 32: 289-304.

Wang, Y.Q., Zhang, H.M. & Wang, R.H. 2008. Investigation of the interaction between colloidal TiO2 and bovine hemoglobin using spectral methods. Colloids and Surfaces B: Biointerfaces 65: 190-196.

Wolfrum, E.J., Huang, J., Blake, D.M., Maness, P.C., Huang, Z., Fiest, J. & Jacoby, W.A. 2002. Photocatalytic oxidation of bacteria, bactericidal and fungal spores and model biofilm components to carbon dioxide on TiO2 coated surfaces. Environmental Science Technology 36: 3412-3419.

Zan, L., Fa, W.J., Peng, T.Y. & Gong, Z.K. 2007. Photocatalysis effect of nanometer TiO2 and TiO2-coated ceramic plate on Hepatitis Bvirus. Journal of Photochemistry and Photobiology B: Biology 86: 165-169.

Zhanga, Y., Zhenga, H., Liub, G. & Battagliab, V. 2009. Synthesis and electrochemical studies of a layered spheric TiO2 through low temperature solvothermal method. Electrochimica Acta 54: 4079-4083.

 

*Corresponding author; email: shahidan@ukm.my

 

 

previous