Sains
Malaysiana 41(2)(2012): 219–224
Inactivation of Escherichia
coli Under Fluorescent Lamp using TiO2
Nanoparticles
Synthesized Via Sol Gel Method
(Penyahaktifan Escherichia
coli di bawah Lampu Pendarfluor Menggunakan
Nanozarah TiO2 yang Disintesis
Melalui Kaedah Sol Gel)
Sapizah
Rahim & Shahidan Radiman*
School
of Applied Physics, Faculty of Science & Technology
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor D.E. Malaysia
Ainon
Hamzah
School
of Biosciences and Biotechnology, Faculty of Science & Technology
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor D.E. Malaysia
Received:
30 March 2011 /Accepted: 1 August 2011
ABSTRACT
Titanium dioxide
nanoparticles were synthesized by using sol gel method and their physico-chemical
properties were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform
infrared spectroscopy (FTIR)
and UV-Vis
spectrophotometer. The photocatalytic property of TiO2 nanoparticles was investigated by inactivation of Escherichia
coli under irradiation of fluorescent lamp. The results showed that the size
of TiO2 was in the range
of 3 to 7 nm with high crystallinity of anatase phase. The sharp peaks in FTIR spectrum determined
the purity of TiO2 nanoparticles
and absorbance peak of UV-Vis
spectrum showed the energy band gap of 3.2 eV. Optimum inactivation of E.
coli was obtained at 1.0 g/L TiO2 nanoparticles,
with 80% of E. coli population was inactivated. The light scattering
effect and insufficient concentration are the factors that cause the less
effective inactivation reaction for 2.5 g/L and 0.1 g/L TiO2 concentration.
Keywords: E.
coli; photocatalyst; sol gel; TiO2 nanoparticles
ABSTRAK
Nanozarah titanium dioksida
telah disintesis dengan menggunakan kaedah sol gel dan sifat fizik-kimia telah
dicirikan dengan menggunakan mikroskop transmisi elektron (TEM),
pembelauan sinar-X (XRD),
spektroskopi inframerah transformasi Fourier (FTIR)
dan UV-Vis
spektrofotometer. Sifat fotomangkin nanozarah TiO2 telah dikaji terhadap penyahaktifan Escherichia
coli di bawah sinaran lampu pendarflour. Hasil kajian menunjukan saiz
nanozarah TiO2 adalah dalam
julat 3 ke 7 nm dengan habluran fasa anatase yang tinggi. Puncak tajam pada
spectrum FTIR menunjukan
ketulenan nanozarah TiO2 dan
serapan UV-Vis menunjukan
jurang petala tenaga adalah 3.2 eV. Penyahaktifan E. coli yang optimum
diperolehi pada 1.0 g/L kepekatan TiO2 dengan
80% populasi E. coli dinyahaktifkan. Kesan serakan cahaya dan kepekatan
yang tidak mencukupi adalah faktor kepada kurang efektif tindak balas
penyahaktifan pada 0.1 g/L dan 2.5 g/L kepekatan TiO2.
Kata kunci: E. coli; fotomangkin; nanozarah TiO2;
sol gel
REFERENCES
Ainon Hamzah, Amir Rabu, Raja Farzarul Hanim Raja Azmy &
Noor Aini Yussoff. 2010. Isolation and characterization of bacteria degrading
sumandak and south angsi oils. Sains Malaysiana 39(2): 161-168.
Anwar, N.S.,
Kassim, A., Lim, H.N., Zakarya, S.A. & Huang, N.M. 2010. Synthesis of TiO2 nanoparticles via
sucrose ester micelle-mediated hydrothermal processing route. Sains
Malaysiana 39: 2-4.
Benabbou, A.K.,
Derriche, Z., Felix, C., Lejeune, P. & Guillard, C. 2007. Photocatalytic
inactivation of Escherichia coli, effect of concentration of titanium
dioksida and microorganism, nature and intensity of UV irradiation. Applied
Catalyst B: Environmental 76: 257-263.
Calandra, P.,
Goffredi, M. & Liveri, V.T. 1999. Study of the growth of ZnS nanoparticles
in water/AOT/n-heptane microemulsions by UV-absorption spectroscopy. Colloids
and Surface A 160: 9-13.
Carp, O.,
Huisman, C.L. & Reller, A. 2004. Photoinduced reactivity of TiO2. Progress Solid State
Chemistry 32: 133-177.
Coleman, H.M.,
Marquis, C.P., Scott, J.A., Chin, S.S. & Amal, R. 2005. Bacterial effects of
TiO2-based
photocatalyst. Chemical Engineering Journal 113: 55-63.
Fujishima, A.,
Rao, T.N. & Tryk, D.A. 2000. Titanium dioxide photocatalysis. Journal of
Photochemistry and Photobiology C: Photochemistry Reviews 1: 1-12.
Grieken, R.,
Marugan, J., Sordo, C. & Pablos, C. 2009. Comparison of the photocatalyticc
disinfection of E. coli suspensions in slurry, wall and fixed-bed reactors. Catalysis
Today 144(1-2): 48-54.
Han, S., Choi,
S.-H., Kim, S.-S., Cho, M., Jang, B., Kim, D.-Y., Yoon, J. & Hyeon, T. 2005.
Low-temperature synthesis of highly crystalline TiO2 nanocrystals and their application to photocatalysis. Small 1:
812-816.
Jacoby, W.A.,
Maness, B.C., Wolfrum, E.J., Blake, D.M. & Fennell, J.A. 1998.
Mineralization of bacterial cell mass on a photocatalytic surface in air. Environmental
Science and Technology 32: 2650-2653.
Ji, L.Y., Yuan,
M.M., Xiaohu, W. & Xiaohua, W. 2008. Inactivated properties of activated
carbon-supported TiO2 nanoparticles
for bacteria and kinetic study. Journal of Environmental Sciences 20:
1527-1533.
Jitputti, J.,
Rattanavoravipa, T., Chuangchote, S., Pavasupree, S., Suzuki, Y. &
Yoshikawa, S. 2009. Low temperature hydrothermal synthesis of monodispersed
flower-like titanate nanosheets. Catalysis Communications 10: 378-382.
Kanna, M. &
Wongnawa, S. 2008. Mixed amorphous and nanocrystalline TiO2 powders prepared by sol-gel method: Characterization and
photocatalytic study. Materials Chemistry and Physics 110: 166-175.
Kao, L.H., Hsu,
T.C. & Lu, H.Y. 2007. Sol–gel synthesis and morphological control of
nanocrystalline TiO2 via
urea treatment. Journal of Colloid and Interface Science 316: 160-167.
Kikuchi, Y.,
Sunada, K., Iyoda, T., Hashimoto, K. & Fujishima, A. 1997. Photocatalytic
bactericidal effect of TiO2 thin
films: Dynamic view of the active oxygen species responsible for the effect. Journal
of Photochemistry and Photobiology A: Chemistry 106: 51-56.
Kuhn, K.P., Chaberny, I.F.,
Massholder, K., Sticker, M., Benz, V.W., Sonntag, H.G. & Erdinger, L. 2003.
Disinfection of surfaces by photocatalytic oxidation with TiO2 and UVA light. Chemosphere 53: 71-77.
Lee, K.M., Hu, C.W., Chen, H.W.
& Ho, K.C. 2008. Incorporating carbon nanotube in a low-temperature
fabrication process for dye-sensitized TiO2 solar cells. Solar Energy
Materials & Solar Cells 92: 1628-1633.
Li, G., Li., L., Boerio-Goates,
J. & Woodfield, B.F. 2005. High purity anatase TiO2 nanocrystals: Near
room-temperature synthesis, grain growth kinetics, and surface hydration
chemistry. Journal of the American Chemistry Society 24: 8659-8666.
Liu, X.H., Yang, J., Wang, L.,
Yang, X., Lu, L. & Wang, X. 2000. An improvement on sol-gel method for
preparing ultrafine and crystallized titania powder. Materials Science and
Engineering 289: 241-245.
Mahshid, S., Askar, M. &
Sasani Ghamsari, M. 2007. Synthesis of TiO2 nanoparticels by hydrolysis and
peptization of titanium isopropoxide solution. Journal of Materials
Processing Technology 198: 296-300.
Matsunaga, T., Tomoda, R.,
Nakajima, T. & Wake, H. 1985. Photoelectrochemical sterilization of
microbial cells by semiconductor powders. FEMS Microbiol Letter 29:
211-214.
Mizukoshi, Y., Makise, Y., Shuto,
T., Hu, J., Tominaga, A., Shironita, S. & Tanabe, S. 2007. Immobilization
of noble metal nanoparticles on the surface of TiO2 by the sonochemical method:
Photocatalytic production of hydrogen from an aqueous solution of ethanol. Ultrasonics
Sonochemistry 14: 387-392.
Mohammadia, M.R., Fray, D.J.
& Cordero-Cabrera, M.C. 2007. Sensor performance of nanostructured TiO2
thin films derived from particulate sol–gel route and polymeric fugitive
agents. Sensors and Actuators B 124: 74-83.
Nga, P.C., Denga, C.S., Gub, M.G.
& Dai, X.M. 2008. Effect of urea on the photoactivity of titania powder
prepared by sol–gel method. Materials Chemistry and Physics 107: 77-81.
Sartale, S.D. & Lokhande,
C.D. 2000. Growth of copper sulphide thin films by successive inonic layer
adsorption and reaction (SILAR) method. Materials Chemistry and Physics 65:
63-67
Seo, J.-W., Chung, H.-W., Kim,
M.-Y., Lee, J.& Cheon ,J.-W. 2007. Development of water-soluble single
crystalline TiO2 nanoparticles for photocatalytic cancer cell treatment. Photocatalysis
Communication 5: 850-853.
Seven, O., Dindar, B., Aydemir,
S., Metin, D., Ozinel, M.A. & Icli, S. 2004. Solar photocatalytic
disinfection of a group of bacteria and fungi aqueous suspensions with TiO2,
ZnO and Sahara desert dust. Journal of Photochemistry and Photobiology A:
Chemistry 165: 103-107.
Sunada, K., Kikuchi, Y.,
Hashimoto, K. & Fujishima, A. 1998. Bactericidal and detoxification effects
of TiO2 thin film photocatalyst. Environmental Science and Technology 32:
726-728.
Sunada, K., Watanabe, T. &
Hashimoto, K. 2003. Studies on photokilling of bacteria on TiO2 thin film. Journal
of Photochemical and Photobiology A:Chemistry 156: 227-233.
Thevenot, P., Cho, J., Wavhal,
D., Timmons, R.B. & Tang, L. 2008. Surface chemistry influences cancer
killing effect of TiO2 nanoparticles. Nanomedicine: Nanotechnology, Biology,
and Medicine 4: 226-236.
Trung, T. & Ha, C.S. 2004. One-component
solution system to prepare nanometric anatase TiO2. Materials Science and
Engineering 24: 19-22.
Velasco, M.J., Rubio, F., Rubia,
J. & Oteo, J.L. 1999. Hydrolysis of titanium tetrabutoxide study by FTIR
spectroscopy. Thermochemistry Acta 32: 289-304.
Wang, Y.Q., Zhang, H.M. &
Wang, R.H. 2008. Investigation of the interaction between colloidal TiO2 and
bovine hemoglobin using spectral methods. Colloids and Surfaces B:
Biointerfaces 65: 190-196.
Wolfrum, E.J., Huang, J., Blake,
D.M., Maness, P.C., Huang, Z., Fiest, J. & Jacoby, W.A. 2002.
Photocatalytic oxidation of bacteria, bactericidal and fungal spores and model
biofilm components to carbon dioxide on TiO2 coated surfaces. Environmental
Science Technology 36: 3412-3419.
Zan, L., Fa, W.J., Peng, T.Y.
& Gong, Z.K. 2007. Photocatalysis effect of nanometer TiO2 and TiO2-coated
ceramic plate on Hepatitis Bvirus. Journal of Photochemistry and
Photobiology B: Biology 86: 165-169.
Zhanga, Y., Zhenga, H., Liub, G.
& Battagliab, V. 2009. Synthesis and electrochemical studies of a layered
spheric TiO2 through low temperature solvothermal method. Electrochimica
Acta 54: 4079-4083.
*Corresponding
author; email: shahidan@ukm.my
|