Sains Malaysiana 41(2)(2012): 237–244

 

Kesan Parameter Pemprosesan dan Bahan Tambah Terhadap Pengendapan Elektroforetik

Filem LSCF6428

(Effects of Processing Parameters and Additives on Electrophoretic Deposited LSCF6428 Films)

 

 

Hamimah Abd. Rahman

Institut Sel Fuel, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor D.E. Malaysia

 

Andanastuti Muchtar*, Syaharizan Haron, Norhamidi Muhamad & Huda Abdullah

Fakulti Kejuruteraan dan Alam Bina, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor D.E. Malaysia

 

Received: 28 January 2011 / Accepted: 19 August 2011

 

 

ABSTRAK

Kaedah pengendapan elektroforetik (EPD) semakin mendapat perhatian dalam pembentukan komponen sel fuel oksida pepejal (SOFC). Kaedah EPD menggunakan pelarut organik atau pelarut bukan akueus banyak diaplikasikan terutamanya untuk penghasilan komponen elektrolit SOFC. Dalam kajian ini, filem LSCF6428 telah dihasilkan melalui kaedah EPD yang menggunakan air ternyahion sebagai pelarut akueus. Sebagai permulaan, serbuk LSCF6428 sebanyak 1% berat (1 wt%) diampaikan di dalam air ternyahion. Seterusnya, ampaian dengan nilai pH3 digunakan untuk proses EPD. Peningkatan nilai voltan kenaan (3-7 V) dan tempoh pengendapan (3-10 min) didapati telah menyumbang kepada penambahan amaun filem LSCF6428 yang diendapkan. Penggunaan kanji sebagai bahan tambah didapati berjaya membantu meningkatkan kualiti filem endapan dengan merujuk kepada berat endapan yang lebih tinggi dan endapan yang sekata. Pemilihan voltan kenaan dan proses pengeringan yang sesuai perlu diambil berat bagi mengelakkan keretakan filem endapan. Hasil kajian menunjukkan bahawa morfologi dan berat filem LSCF6428 yang diendapkan sangat bergantung kepada voltan kenaan, masa pengendapan dan penggunaan bahan tambah bagi proses EPD.

 

Kata kunci: Filem LSCF6428; kanji; pelarut akueus; pengendapan elektroforetik (EPD)

 

 

ABSTRACT

The application of electrophoretic deposition (EPD) method in the fabrication of solid oxide fuel cell (SOFC) components has attracted interest. The EPD method frequently employs organic or non-aqueous solvent for the fabrication of SOFC components especially electrolyte. In this study, the LSCF6428 film was developed via the EPD method using an aqueous solvent. To begin with, 1 wt% of LSCF6428 powder was suspended in deionised water. The EPD process was then applied on the suspension with pH3. An increase in the applied voltage (3-7 V) and deposition time (3-10 min) was found to contribute to the increased amount of the deposited LSCF6428 films. With reference to the higher amount and uniform deposition of films, the use of starch as an additive material has been shown to successfully improve the quality of the deposited films. The applied voltage and drying conditions must be carefully selected in order to avoid cracking of the deposited films. The results showed strong dependence of the morphology and weight of the LSCF6428 films on the applied voltage, deposition time and the use of additive materials in the EPD process.

 

Keywords: Aqueous solvent; electrophoretic deposition (EPD); LSCF6428 film; starch

REFERENCES

 

Andanastuti Muchtar, Noorashrina A. Hamid, Norhamidi Muhamad & Daud, W.R.W. 2010. Sintering effects on LSCF cathodes for intermediate temperature solid oxide fuel cells (IT-SOFCs). Advanced Materials Research 139-141: 141-144.

Asamoto, M., Miyake, S., Yonei, Y., Yamaura, H. & Yahiro, H. 2009. Electrochemical performances of proton-conducting SOFC with La-Sr-Fe-O cathode fabricated by electrophoretic deposition techniques. Electrochemistry 77(2): 143-145.

Basu, R.N., Randall, C.A. & Mayo, M.J. 2001. Fabrication of dense zirconia electrolyte films for tubular solid oxide fuel cells by electrophoretic deposition. Journal of American Ceramic Society 84(1): 33-40.

Besra, L., Compson, C. & Liu, M. 2006. Electrophoretic deposition of YSZ particles on non-conducting porous NiO–YSZ substrates for solid oxide fuel cell applications. Journal of American Ceramic Society 89(10): 3003-3009.

Besra, L. & Liu, M. 2007. A review on fundamentals and applications of electrophoretic deposition (EPD). Progress in Materials Science 52: 1-61.

Cherng, J.S., Sau, J.R. & Chung, C.C. 2008. Aqueous electrophoretic deposition of YSZ electrolyte layers for solid oxide fuel cells. Journal of Solid State Electrochemistry 12: 925-933.

Fergus, J.W. 2007. Overview materials challenges for solid-oxide fuel cells. Hydrogen Economy: 56-62.

Greenwood, R. 2003. Review of the measurement of zeta potentials in concentrated aqueous suspensions using electroacoustics. Advances in Colloid and Interface Science 106: 55-81.

Hamimah Abd.Rahman, Andanastuti Muchtar, Norhamidi Muhamad & Huda Abdullah. 2010. Electrophoretic deposition of La0.6Sr0.4Co0.2Fe0.8O3-δ cathode film on stainless steel substrates. Advanced Materials Research 139-141: 145-148.

Ishihara, T., Sato, K. & Takita, Y. 1996. Electrophoretic deposition of Y2O3-stabilized ZrO2 electrolyte films in solid oxide fuel cells. Journal of the American Ceramic Society 79: 913-919.

Leng, Y.J., Chan, S.H., Jiang, S.P. & Khor, K.A. 2004. Low-temperature SOFC with thin film GDC electrolyte prepared in situ by solid-state reaction. Solid State Ionics 170: 9-15.

Negishi, H., Yamaji, K., Imura, T., Kitamoto, D., Ikegami, T. & Yanagishita, H. 2005. Electrophoretic deposition mechanism of YSZ/n-propanol suspension. Journal of the Electrochemcial Society 152(2): J16-J22.

NoorAshrina A. Hamid, Andanastuti Muchtar, Wan Ramli Wan Daud & Norhamidi Muhamad. 2009. Pencirian mikrostruktur katod La-Sr-Co-Fe-O bagi sel fuel oksida pejal bersuhu sederhana (IT-SOFC). Sains Malaysiana 38(6): 857-861.

Randall, C. & Tassel, J.V. 2001. Electrophoretic deposition. In Encylopedia of Materials: Science and Technology. UK: Elsevier Science Ltd.

Reed, J.S. 1995. Principles of Ceramic Processing. Ed. Ke 2. New York: Wiley & Sons.

Santillán, M.J., Caneiro, A., Quaranta, N. & Boccaccini, A.R. 2009. Electrophoretic deposition of La0.6Sr0.4Co0.8Fe0.2O3−δ cathodes on Ce0.9Gd0.1O1.95 substrates for intermediate temperature solid oxide fuel cell (IT-SOFC). Journal of European Ceramic Society 29: 1125-1132.

Sora, I.N., Pelosato, R., Simone, A., Montanaro, L., Maglia, F. & Chiodelli, G. 2006. Characterization of LSGM films

obtained by electrophoretic deposition (EPD). Solid State Ionics 177: 1985-1989.

Tang, F., Uchikoshi, T. & Sakka, Y. 2002. Electrophoretic deposition behavior of aqueous nanosized zinc oxide suspensions. Journal of American Ceramic Society 85(9): 2161-2165.

Wincewicz, K.C. & Cooper, J.S. 2005. Taxonomies of SOFC material and manufacturing alternatives. Journal of Power Sources 140: 280-296.

Yaseen, H., Baltianski, S. & Tsur, Y. 2007. Cathodic electrophoretic deposition of barium titanate films from aqueous solution. Journal of Materials Science 42: 9679–9683.

Zhao, J., Wang, X. & Li, L. 2006. Electrophoretic deposition of BaTiO3 films from aqueous suspensions. Materials Chemistry and Physics 99: 350–353.

 

 

*Corresponding author; email: muchtar@eng.ukm.my

 

 

previous