Sains Malaysiana 41(2)(2012): 253–260
High Order Explicit Hybrid Methods for
Solving Second-Order Ordinary Differential Equations
(Kaedah Hibrid Tak
Tersirat Peringkat Tinggi bagi Menyelesaikan Persamaan Pembezaan
Biasa Peringkat-Dua)
F. Samat*, F. Ismail
& M. Suleiman
Department of Mathematics, Faculty
of Science, Universiti Putra Malaysia
43400 UPM Serdang, Selangor D.E. Malaysia
Received: 18
March 2011 / Accepted: 19 August 2011
ABSTRACT
Two explicit hybrid methods
with algebraic order seven for the numerical integration of second-order
ordinary differential equations of the form y̋ = f
(x, y) are developed. The algebraic order of these methods is the highest in
comparison with other explicit hybrid methods of the same class. Numerical
comparisons carried out show the advantage of the new methods.
Keywords: Algebraic order;
explicit hybrid method; second-order ordinary differential equations
ABSTRAK
Dua kaedah hibrid tak
tersirat dengan peringkat algebra tujuh untuk pengamiran berangka persamaan
pembezaan biasa peringkat-dua berbentuk y̋ = f
(x, y) dibangunkan. Peringkat algebra bagi kaedah-kaedah ini adalah yang
tertinggi berbanding dengan kaedah hibrid tak tersirat lain dalam kelas yang
sama. Perbandingan berangka yang dilakukan menunjukkan kelebihan bagi
kaedah-kaedah baru ini.
Kata kunci: Kaedah hibrid tak tersirat; peringkat algebra;
persamaan pembezaan biasa peringkat-dua
REFERENCES
Brusa,
L. & Nigro, L. 1980. A one-step method for direct integration of structural
dynamic equations. International Journal for Numerical Methods in
Engineering 15: 685-699.
Cash, J.R. 1981. High
order P-stable formulae for the numerical integration of periodic initial value
problems. Numerische Mathematik 37: 355-370.
Chan, R.P.K., Leone, P. & Tsai, A. 2004. Order conditions
and symmetry for two-step hybrid methods. International Journal of Computer
Mathematics 81(12): 1519-1536
Chawla, M.M.
1984. Numerov made explicit has better stability. BIT 24: 117-118.
Coleman, J.P.
2003. Order conditions for a class of two-step methods for y̋ = f (x,y).
Journal of Numerical Analysis 23: 197-220.
Fatunla, S.O.,
Ikhile M.N.O. & Otunta, F.O. 1999. A class of P-stable linear multistep
numerical methods. International Journal of Computer Mathematics 72:
1-13.
Franco, J. M.
2006. A class of explicit two-step hybrid methods for second-order IVPs. Journal
of Computational .and Applied Mathematics 187: 41-57.
Hairer, E. 1979.
Unconditionally stable methods for second order differential equations, Numerische
Mathematik 32: 373-379.
Tsitouras, Ch.
2002. Explicit two-step methods for second-order linear IVPs. Computers and
Mathematics with Applications 43: 943-949.
Tsitouras, Ch.
2003. Families of explicit two-step methods for integration of problems with
oscillating solutions. Applied Mathematics and Computation 135: 169-178.
Tsitouras, Ch.
2006. Stage reduction on P-stable Numerov type methods of eighth order. Journal
of Computational and Applied.Mathematics 191: 297-305.
van Der Houwen,
P.J & Sommeijer, B.P. 1987. Explicit Runge-Kutta (-Nystrom) methods with
reduced phase errors for computing oscillating solutions. SIAM Journal of
Numerical Analysis 24: 595-617.
*Corresponding author; email: faieza77@yahoo.com
|