Sains Malaysiana 42(3)(2013): 279–287
Effects of Enzyme Concentration, Temperature, pH
and Time on the Degree of Hydrolysis of Protein Extract from Viscera of Tuna (Euthynnus
affinis) by Using Alcalase
(Kesan Kepekatan Enzim, Suhu,
pH dan Masa ke atas Darjah Hidrolisis Ekstrak Protein
daripada Visera Tuna
(Euthynnus affinis) Menggunakan Alcalase)
S. Salwanee, W.M. Wan Aida*, S. Mamot
& M.Y. Maskat
School
of Chemical Sciences and Food Technology, Faculty Science and Technology
Universiti
Kebangsaan Malaysia, 43600 UKM,
Bangi, Selangor Darul Ehsan, Malaysia
S. Ibrahim
Fishery Research Institute Batu Maung,
11960 Batu Maung, Pulau Pinang, Malaysia
Received: 1 March 2012 /
Accepted: 17 September 2012
ABSTRACT
Protein from viscera of tuna was
extracted by using water at ratio of viscera to water of 1:1 (w/v) and
freeze-dried. The protein was found to be high in glycine (9.6%), arginine
(9.2%), alanine (7.0%), lysine (7.2%) and leucine (7.0%). A study was then
carried out to determine the effect of alcalase concentration, temperature, pH
and incubation time on degree of hydrolysis (DH)
during hydrolysis by using single factor experiment. The hydrolysis of viscera
protein extract (VPE) was
carried out at concentrations of 1.0, 1.5 and 2.0%. The DH of hydrolysates was significantly (p<0.05)
increased when enzyme concentration was increased from 1.0% to 1.5% but became
constant at concentration exceeding 1.5%. An enzyme concentration at 1.5% was
subsequently used in the study of the effect of the other parameters. It was
found that the value of the DH also
increased when the temperature was increased from 30 to 40°C. However, the
hydrolysis at higher temperature (60°C) produced lower DH.
Prolonging the time of incubation from 60 min up to 240 min significantly (p<
0.05) increased the DH. As
for pH, there were no significant effects observed.
Keywords: Alcalase; hydrolysis; tuna;
viscera
ABSTRAK
Protein
daripada bahan buangan tuna diekstrak menggunakan air pada nisbah 1:1 (w/v) dan
dikering sejuk bekukan. Ekstrak protein
adalah tinggi dengan kandungan glisin (9.6%), arginin (9.2%), alanin (7.0%),
lisin (7.2%) dan leusin (7.0%). Suatu kajian
seterusnya dijalankan untuk menentukan kesan kepekatan enzim alkalase, suhu, pH
dan masa eraman ke atas darjah hidrolisis (DH)
semasa hidrolisis menggunakan eksperimen faktor tunggal. Ekstrak protein visera dilakukan pada kepekatan 1.0, 1.5 dan 2.0%. DH bagi hidrolisat meningkat
dengan signifikan pada p<0.05 apabila kepekatan enzim meningkat
daripada 1.0 ke 1.5% tetapi menjadi malar pada kepekatan melebihi 1.5%.
Kepekatan enzim pada 1.5% digunakan dalam kajian seterusnya untuk menentukan
parameter-parameter lain. Didapati nilai DH juga bertambah dengan signifikan (p<0.05)
apabila suhu ditingkatkan daripada 30-40°C. Walau bagaimanapun, hidrolisis pada
suhu lebih tinggi (60°C) menghasilkan DH yang
lebih rendah. Pemanjangan masa eraman daripada 60 ke 240 min,
meningkatkan DH secara signifikan (p<0.05). Bagi pH pula, tiada kesan yang signifikan ke atas nilai DH diperhatikan.
Kata kunci: Alkalase; hidrolisis; tuna;
visera
ABSTRAK
Protein
daripada bahan buangan tuna diekstrak menggunakan air pada nisbah 1:1 (w/v) dan
dikering sejuk bekukan. Ekstrak protein
adalah tinggi dengan kandungan glisin (9.6%), arginin (9.2%), alanin (7.0%),
lisin (7.2%) dan leusin (7.0%). Suatu kajian seterusnya
dijalankan untuk menentukan kesan kepekatan enzim alcalase, suhu, pH dan masa
eraman ke atas darjah hidrolisis (DH)
semasa hidrolisis menggunakan eksperimen faktor tunggal. Ekstrak protein visera dilakukan pada kepekatan 1.0, 1.5 dan 2.0%. DH bagi hidrolisat meningkat
dengan signifikan pada p<0.05 apabila kepekatan enzim meningkat
daripada 1.0 ke 1.5% tetapi menjadi malar pada kepekatan melebihi 1.5%.
Kepekatan enzim pada 1.5% digunakan dalam kajian seterusnya untuk menentukan
parameter-parameter lain. Didapati nilai DH juga bertambah dengan signifikan (p<0.05)
apabila suhu ditingkatkan daripada 30-40°C. Walau bagaimanapun, hidrolisis pada
suhu lebih tinggi (60°C) menghasilkan DH yang
lebih rendah. Pemanjangan masa eraman daripada 60 ke 240 min, meningkatkan DH secara signifikan (p<0.05). Bagi pH pula, tiada kesan yang signifikan ke atas nilai DH diperhatikan.
Kata kunci: Alcalase; hidrolisis;
Tuna; visera
REFERENCES
Arnesen, J.A. &
Gildberg, A. 2006. Extraction of muscle proteins and gelatine
from cod head. Process Biochemistry 41: 697-700.
Aspmo,
S.I., Horn, S.J., Eijsink, V.G.H. 2005. Enzymatic hydrolysis
of Atlantic cod (Gadus morhua L.) viscera. Process Biochem. 40: 1957-1966.
Association
of Official Analytical Chemists (AOAC). 1990. Official Methods of Analysis.
15th ed. USA: AOAC Inc.
Association
of Official Analytical Chemists (AOAC). 2000. Official Method 988.15. Official Methods of Analysis. 17th ed. USA: AOAC Inc.
Benjakul, S. &
Morrisey, M.T. 1997. Protein hydrolysate from Pacific whiting
solid waste. J. Agric. Food Chem. 45(9): 3423-3430.
Bhaskar,
N., Benila, T., Radha, C. & Lalitha, R.G. 2008. Optimization
of enzymatic hydrolysis of visceral waste proteins of Catla (Catla catla)
for preparing protein hydrolysate using a commercial protease. Bioresource
Technology 99: 335-343.
Bhaskar,
N., Modi, V.K., Govindaraju, K., Radha, C. & Lalitha, R.G. 2007. Utilisation of meat
industry byproducts: Protein hydrolysate from
sheep visceral mass. Biores. Tech. 98: 388-394.
Blackburn, S. 1986. Amino
Acids Determination Methods and Techniques. New York: Marcel Dekker Inc.
Capiralla, H., Hiroi,
T., Hirokawa, T. & Maeda, S. 2002. Purification and
characterization of a hydrophobic amino acid-specific endopeptidase from
Halobacterium halobium S9 with potential application in debittering of protein
hydrolysates. Process Biochemistry 38: 571-579.
Chen, D-W. & Zhang, M. 2007. Non-volatile taste active compounds in
the meat of Chinese mitten crab (Eriocheir sinensis). Food Chemistry 104:
1200-1205.
Dufosse,
L., De La Broise, D. & Guerard, F. 1997. Review: Fish protein
hydrolysates as nitrogen sources for microbial growth and metabolite
production. In Recent Research Developments in
Microbiology. Research Sign Post Publ. Trivandrum India. 1: 365-381.
FAO/WHO. 1990.
Protein Quality Evaluation. Report of the Joint FAO/ WHO
Expert Consultation. Rome: Food and Agriculture Organization of the
United Nations.
FitzGerald,
R. J. & O’Cuinn, G.O. 2006. Enzymatic debittering of food
protein hydrolysates. Biotechnology Advances 24: 234-237.
Guerard,
F., Duffose, L., De La Broise, D. & Binet, A. 2001. Enzymatic hydrolysis of
proteins from yellowfin tuna (Thunnus albacares) wastes using alcalase. J.
Mol. Catalysis B: Enzymatic 11: 1051-1059.
Guerard,
F., Guimas, L. & Binet, A. 2002. Production of tuna waste hydrolysates by a
commercial neutral protease preparation. Journal of Molecular Catalysis B:
Enzymatic 19-20: 489-498.
Hall, G.M. & Ahmad,
N.H. 1992. Functional properties of fish protein
hydrolysates. Ch. 11 In Fish Processing Technology, edited by
Hall, G.M. New York: Blackie Academic and Professional.
Haslaniza, H., Maskat,
M.Y., Wan Aida, W.M. & Mamot, S. 2010. The effects of enzyme concentration,
temperature and incubation time on nitrogen content and degree of hydrolysis of
protein precipitate from cockle (Anadara granosa) meat wash water. International
Food Research Journal 17: 147-152.
Hoyle, N.T. &
Merritt, J.H. 1994. Quality of fish protein hydrolysate from
Herring (Clupea harengus). J. Food Sci. 59: 76-79.
Humiski, L.M. &
Aluko, R.E. 2007. Physicochemical and bitterness properties
of enzymatic pea protein hydrolysates. Sensory and
nutritive qualities of food. Journal of Food Science 72(8):
S605-S611.
Ishibashi, N., Ono, I.,
Kato, K., Shigenaga, T., Shinoda, I., Okai, H. & Fukui, S. 1988. Role of the hydrophobic amino acid residue in the bitterness of
peptides. Agric. Biol. Chem. 52: 91-94.
James,
I.T., Philip, B.G. & Sheila, A.B. 2005. Optimization of
conditions for the enzymatic
hydrolysis of phytoestrogen
conjugates in urine and plasma. Analytical Biochemistry 341: 220-229.
Kristinsson, H.G. &
Rasco, B.A. 2000. Fish protein hydrolysates: Production, biochemical and
functional properties. Crit. Rev. Food Sci. Nutr. 40:
43-81.
Liaset, B., Lied, E.
& Espe, M. 2000. Enzymatic hydrolysis of by-products from
the fish-filleting industry, chemical characterization and nutritional evaluation. J. Sci. Food Agric. 80: 581-589.
Liceaga-Gesualdo,
A.M. & Li-Chan, E.C.Y. 1999. Functional properties of fish
protein hydrolysate from Herring (Clupea harengus). Journal of
Food Science 64(6): 1000-1004.
Montecalvo, J.,
Constantinides, S.M. & Yang, S.T. 1984. Enzymatic
modification of fish frame protein isolate. Journal of Food Science 49:
1305-1309.
Mukhin, V.A. &
Novikov, V.Y. 2001. Enzymatic hydrolysis of proteins from
Crustaceans of the Barents Sea. Applied Biochemistry and Microbiology 37(5): 538-542.
Mullaly,
M.M., O’Callaghan, D.M., Fitzgerald, R.J., Donnelly, W.J. & Dalton, J.P.
1995. Zymogen activation in pancreatic endoproteolytic preparations
and influence on some whey protein characteristics. J. Food Sci.
60(2): 227-233.
Murano,
P.S. 2003. Enzymes in food processing-the protein hydrolysates. Understanding
Food Science and Technology. USA: Wadsworth/Thomson Learning.
National
Research Council. Nutrient Requirements of Fish. 1993.
Washington: National Academy of Sciences.
Nielsen, P.M. 1995. Enzyme Technology for Production of Protein-based Flavor. Denmark: Novo Nordisk.
Nilsang,
S., Lertsiri, S., Suphantharika, M. & Assavanig, A. 2005. Optimization
of enzymatic hydrolysis of fish soluble concentrate by commercial proteases. Journal of Food Engineering 70: 571-578.
Noraisyah, A.B. &
Raja Bidin, R.H. 2011. Tuna fisheries in Malaysia. SEAFDEC. Report of the Special Meeting on the Improvement
of The Tuna Information and Data Collection in Southeast Asia. Thailand:
Southeast Asian Fisheries Development Center, Training Department. TD/RP/151.
Novo
Nordisk Technical Bulletin. 1995. Alcalase® Food Grade. Enzyme
Process Division.
Ovissipour,
M., Abedian, A., Motamedzadegan, A., Rasco, B.C., Safari, R. & Shahiri, H.
2009. The effect of enzymatic hydrolysis time and temperature on
the properties of protein hydrolysates from Persian sturgeon (Acipenser
persicus) viscera. Food Chemistry 115: 238-242.
Sathivel,
S., Smiley, S., Prinyawiwatkul, W. & Peter, J. 2005. Functional
and nutritional properties of Red Salmon (Oncorhynchus nerka) enzymatic
hydrolysates. Journal of Food Science 70(6): C401-C406.
See, S.F., Hoo, L.L.
& Babji, A.S. 2011. Optimization
of enzymatic hydrolysis of Salmon (Salmo salar) skin by alcalase. International Food Research Journal 18(4): 1359-1365.
Slizyte,
R., Rustad, T. & Storrø, I. 2005. Enzymatic hydrolysis of cod (Gadus morhua) by-products : Optimization of yield and properties of lipid and
protein fractions. Process Biochemistry 40: 3680-3692.
Spurvey, S., Pan, B.S.
& Shahidi, F. 1998. Flavour of shellfish. In Flavor
of Meat, Meat Products, and Seafoods, edited by Shahidi, F. 2nd ed., London, United
Kingdom: Blackie Academic and Professional.
Thiansilakul,
Y., Benjakul, S. & Shahidi, F. 2007. Compositions, functional properties and
antioxidative activity of protein hydrolysates prepared from round scad (Decapterus
maruadsi) Food Chemistry 103: 1385-1394.
Tuna
Investment 2001. 2003. Tuna Fisheries in Malaysia. Penang: Fisheries Institute.
Tyler, M.I. 2000. Amino
acid analysis: An overview. In Amino Acid Analysis Protocols Methods in
Molecular Biology, edited by Cooper, C., Packer, N. & Williams, K.
Totowa, New Jersey: Humana Press Inc.
Viera, G.H.F., Martin, A.M., Sampaiao, S.S., Omar, S. &
Gonsalves, R.C.F. 1995. Studies on the enzymatic hydrolysis of Brazilian
lobster (Panulirus spp.) processing wastes. J. Sci. Food Agric.
69: 61-65.
Yu, S.Y. & Ahmad, R.
1998. Hydrolysis of proteins from Liza subviridis. Asian
Fisheries Science 10: 251-257.
*Corresponding author;
email: wawm@pkrisc.cc.ukm.my
|