Sains Malaysiana 42(3)(2013): 279–287

 

Effects of Enzyme Concentration, Temperature, pH and Time on the Degree of Hydrolysis of Protein Extract from Viscera of Tuna (Euthynnus affinis) by Using Alcalase

(Kesan Kepekatan Enzim, Suhu, pH dan Masa ke atas Darjah Hidrolisis Ekstrak Protein

daripada Visera Tuna (Euthynnus affinis) Menggunakan Alcalase)

 

S. Salwanee, W.M. Wan Aida*, S. Mamot & M.Y. Maskat

School of Chemical Sciences and Food Technology, Faculty Science and Technology

Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor Darul Ehsan, Malaysia

 

S. Ibrahim

Fishery Research Institute Batu Maung, 11960 Batu Maung, Pulau Pinang, Malaysia

 

Received: 1 March 2012 / Accepted: 17 September 2012

 

ABSTRACT

Protein from viscera of tuna was extracted by using water at ratio of viscera to water of 1:1 (w/v) and freeze-dried. The protein was found to be high in glycine (9.6%), arginine (9.2%), alanine (7.0%), lysine (7.2%) and leucine (7.0%). A study was then carried out to determine the effect of alcalase concentration, temperature, pH and incubation time on degree of hydrolysis (DH) during hydrolysis by using single factor experiment. The hydrolysis of viscera protein extract (VPE) was carried out at concentrations of 1.0, 1.5 and 2.0%. The DH of hydrolysates was significantly (p<0.05) increased when enzyme concentration was increased from 1.0% to 1.5% but became constant at concentration exceeding 1.5%. An enzyme concentration at 1.5% was subsequently used in the study of the effect of the other parameters. It was found that the value of the DH also increased when the temperature was increased from 30 to 40°C. However, the hydrolysis at higher temperature (60°C) produced lower DH. Prolonging the time of incubation from 60 min up to 240 min significantly (p< 0.05) increased the DH. As for pH, there were no significant effects observed.

 

Keywords: Alcalase; hydrolysis; tuna; viscera

 

ABSTRAK

Protein daripada bahan buangan tuna diekstrak menggunakan air pada nisbah 1:1 (w/v) dan dikering sejuk bekukan. Ekstrak protein adalah tinggi dengan kandungan glisin (9.6%), arginin (9.2%), alanin (7.0%), lisin (7.2%) dan leusin (7.0%). Suatu kajian seterusnya dijalankan untuk menentukan kesan kepekatan enzim alkalase, suhu, pH dan masa eraman ke atas darjah hidrolisis (DH) semasa hidrolisis menggunakan eksperimen faktor tunggal. Ekstrak protein visera dilakukan pada kepekatan 1.0, 1.5 dan 2.0%. DH bagi hidrolisat meningkat dengan signifikan pada p<0.05 apabila kepekatan enzim meningkat daripada 1.0 ke 1.5% tetapi menjadi malar pada kepekatan melebihi 1.5%. Kepekatan enzim pada 1.5% digunakan dalam kajian seterusnya untuk menentukan parameter-parameter lain. Didapati nilai DH juga bertambah dengan signifikan (p<0.05) apabila suhu ditingkatkan daripada 30-40°C. Walau bagaimanapun, hidrolisis pada suhu lebih tinggi (60°C) menghasilkan DH yang lebih rendah. Pemanjangan masa eraman daripada 60 ke 240 min, meningkatkan DH secara signifikan (p<0.05). Bagi pH pula, tiada kesan yang signifikan ke atas nilai DH diperhatikan.

 

Kata kunci: Alkalase; hidrolisis; tuna; visera

 

ABSTRAK

Protein daripada bahan buangan tuna diekstrak menggunakan air pada nisbah 1:1 (w/v) dan dikering sejuk bekukan. Ekstrak protein adalah tinggi dengan kandungan glisin (9.6%), arginin (9.2%), alanin (7.0%), lisin (7.2%) dan leusin (7.0%). Suatu kajian seterusnya dijalankan untuk menentukan kesan kepekatan enzim alcalase, suhu, pH dan masa eraman ke atas darjah hidrolisis (DH) semasa hidrolisis menggunakan eksperimen faktor tunggal. Ekstrak protein visera dilakukan pada kepekatan 1.0, 1.5 dan 2.0%. DH bagi hidrolisat meningkat dengan signifikan pada p<0.05 apabila kepekatan enzim meningkat daripada 1.0 ke 1.5% tetapi menjadi malar pada kepekatan melebihi 1.5%. Kepekatan enzim pada 1.5% digunakan dalam kajian seterusnya untuk menentukan parameter-parameter lain. Didapati nilai DH juga bertambah dengan signifikan (p<0.05) apabila suhu ditingkatkan daripada 30-40°C. Walau bagaimanapun, hidrolisis pada suhu lebih tinggi (60°C) menghasilkan DH yang lebih rendah. Pemanjangan masa eraman daripada 60 ke 240 min, meningkatkan DH secara signifikan (p<0.05). Bagi pH pula, tiada kesan yang signifikan ke atas nilai DH diperhatikan.

 

Kata kunci: Alcalase; hidrolisis; Tuna; visera

REFERENCES

Arnesen, J.A. & Gildberg, A. 2006. Extraction of muscle proteins and gelatine from cod head. Process Biochemistry 41: 697-700.

Aspmo, S.I., Horn, S.J., Eijsink, V.G.H. 2005. Enzymatic hydrolysis of Atlantic cod (Gadus morhua L.) viscera. Process Biochem. 40: 1957-1966.

Association of Official Analytical Chemists (AOAC). 1990. Official Methods of Analysis. 15th ed. USA: AOAC Inc.

Association of Official Analytical Chemists (AOAC). 2000. Official Method 988.15. Official Methods of Analysis. 17th ed. USA: AOAC Inc.

Benjakul, S. & Morrisey, M.T. 1997. Protein hydrolysate from Pacific whiting solid waste. J. Agric. Food Chem. 45(9): 3423-3430.

Bhaskar, N., Benila, T., Radha, C. & Lalitha, R.G. 2008. Optimization of enzymatic hydrolysis of visceral waste proteins of Catla (Catla catla) for preparing protein hydrolysate using a commercial protease. Bioresource Technology 99: 335-343.

Bhaskar, N., Modi, V.K., Govindaraju, K., Radha, C. & Lalitha, R.G. 2007. Utilisation of meat industry byproducts: Protein  hydrolysate from sheep visceral mass. Biores. Tech. 98: 388-394.

Blackburn, S. 1986. Amino Acids Determination Methods and Techniques. New York: Marcel Dekker Inc.

Capiralla, H., Hiroi, T., Hirokawa, T. & Maeda, S. 2002. Purification and characterization of a hydrophobic amino acid-specific endopeptidase from Halobacterium halobium S9 with potential application in debittering of protein hydrolysates. Process Biochemistry 38: 571-579.

Chen, D-W. & Zhang, M. 2007. Non-volatile taste active compounds in the meat of Chinese mitten crab (Eriocheir sinensis). Food Chemistry 104: 1200-1205.

Dufosse, L., De La Broise, D. & Guerard, F. 1997. Review: Fish protein hydrolysates as nitrogen sources for microbial growth and metabolite production. In Recent Research Developments in Microbiology. Research Sign Post Publ. Trivandrum India. 1: 365-381.

FAO/WHO. 1990. Protein Quality Evaluation. Report of the Joint FAO/ WHO Expert Consultation. Rome: Food and Agriculture Organization of the United Nations.

FitzGerald, R. J. & O’Cuinn, G.O. 2006. Enzymatic debittering of food protein hydrolysates. Biotechnology Advances 24: 234-237.

Guerard, F., Duffose, L., De La Broise, D. & Binet, A. 2001. Enzymatic hydrolysis of proteins from yellowfin tuna (Thunnus albacares) wastes using alcalase. J. Mol. Catalysis B: Enzymatic 11: 1051-1059.

Guerard, F., Guimas, L. & Binet, A. 2002. Production of tuna waste hydrolysates by a commercial neutral protease preparation. Journal of Molecular Catalysis B: Enzymatic 19-20: 489-498.

Hall, G.M. & Ahmad, N.H. 1992. Functional properties of fish protein hydrolysates. Ch. 11 In Fish Processing Technology, edited by Hall, G.M. New York: Blackie Academic and Professional.

Haslaniza, H., Maskat, M.Y., Wan Aida, W.M. & Mamot, S. 2010. The effects of enzyme concentration, temperature and incubation time on nitrogen content and degree of hydrolysis of protein precipitate from cockle (Anadara granosa) meat wash water. International Food Research Journal 17: 147-152.

Hoyle, N.T. & Merritt, J.H. 1994. Quality of fish protein hydrolysate from Herring (Clupea harengus). J. Food Sci. 59: 76-79.

Humiski, L.M. & Aluko, R.E. 2007. Physicochemical and bitterness properties of enzymatic pea protein hydrolysates. Sensory and nutritive qualities of food. Journal of Food Science 72(8): S605-S611.

Ishibashi, N., Ono, I., Kato, K., Shigenaga, T., Shinoda, I., Okai, H. & Fukui, S. 1988. Role of the hydrophobic amino acid residue in the bitterness of peptides. Agric. Biol. Chem. 52: 91-94.

James, I.T., Philip, B.G. & Sheila, A.B. 2005. Optimization of conditions for the enzymatic

hydrolysis of phytoestrogen conjugates in urine and plasma. Analytical Biochemistry 341: 220-229.

Kristinsson, H.G. & Rasco, B.A. 2000. Fish protein hydrolysates: Production, biochemical and functional properties. Crit. Rev. Food Sci. Nutr. 40: 43-81.

Liaset, B., Lied, E. & Espe, M. 2000. Enzymatic hydrolysis of by-products from the fish-filleting industry, chemical characterization and nutritional evaluation. J. Sci. Food Agric. 80: 581-589.

Liceaga-Gesualdo, A.M. & Li-Chan, E.C.Y. 1999. Functional properties of fish protein hydrolysate from Herring (Clupea harengus). Journal of Food Science 64(6): 1000-1004.

Montecalvo, J., Constantinides, S.M. & Yang, S.T. 1984. Enzymatic modification of fish frame protein isolate. Journal of Food Science 49: 1305-1309.

Mukhin, V.A. & Novikov, V.Y. 2001. Enzymatic hydrolysis of proteins from Crustaceans of the Barents Sea. Applied Biochemistry and Microbiology 37(5): 538-542.

Mullaly, M.M., O’Callaghan, D.M., Fitzgerald, R.J., Donnelly, W.J. & Dalton, J.P. 1995. Zymogen activation in pancreatic endoproteolytic preparations and influence on some whey protein characteristics. J. Food Sci. 60(2): 227-233.

Murano, P.S. 2003. Enzymes in food processing-the protein hydrolysates. Understanding Food Science and Technology. USA: Wadsworth/Thomson Learning.

National Research Council. Nutrient Requirements of Fish. 1993. Washington: National Academy of Sciences.

Nielsen, P.M. 1995. Enzyme Technology for Production of Protein-based Flavor. Denmark: Novo Nordisk.

Nilsang, S., Lertsiri, S., Suphantharika, M. & Assavanig, A. 2005. Optimization of enzymatic hydrolysis of fish soluble concentrate by commercial proteases. Journal of Food Engineering 70: 571-578.

Noraisyah, A.B. & Raja Bidin, R.H. 2011. Tuna fisheries in Malaysia. SEAFDEC. Report of the Special Meeting on the Improvement of The Tuna Information and Data Collection in Southeast Asia. Thailand: Southeast Asian Fisheries Development Center, Training Department. TD/RP/151.

Novo Nordisk Technical Bulletin. 1995. Alcalase® Food Grade. Enzyme Process Division.

Ovissipour, M., Abedian, A., Motamedzadegan, A., Rasco, B.C., Safari, R. & Shahiri, H. 2009. The effect of enzymatic hydrolysis time and temperature on the properties of protein hydrolysates from Persian sturgeon (Acipenser persicus) viscera. Food Chemistry 115: 238-242.

Sathivel, S., Smiley, S., Prinyawiwatkul, W. & Peter, J. 2005. Functional and nutritional properties of Red Salmon (Oncorhynchus nerka) enzymatic hydrolysates. Journal of Food Science 70(6): C401-C406.

See, S.F., Hoo, L.L. & Babji, A.S. 2011. Optimization of enzymatic hydrolysis of Salmon (Salmo salar) skin by alcalase. International Food Research Journal 18(4): 1359-1365.

Slizyte, R., Rustad, T. & Storrø, I. 2005. Enzymatic hydrolysis of cod (Gadus morhua) by-products : Optimization of yield and properties of lipid and protein fractions. Process Biochemistry 40: 3680-3692.

Spurvey, S., Pan, B.S. & Shahidi, F. 1998. Flavour of shellfish. In Flavor of Meat, Meat Products, and Seafoods, edited by Shahidi, F. 2nd ed., London, United Kingdom: Blackie Academic and Professional.

Thiansilakul, Y., Benjakul, S. & Shahidi, F. 2007. Compositions, functional properties and antioxidative activity of protein hydrolysates prepared from round scad (Decapterus maruadsi) Food Chemistry 103: 1385-1394.

Tuna Investment 2001. 2003. Tuna Fisheries in Malaysia. Penang: Fisheries Institute.

Tyler, M.I. 2000. Amino acid analysis: An overview. In Amino Acid Analysis Protocols Methods in Molecular Biology, edited by Cooper, C., Packer, N. & Williams, K. Totowa, New Jersey: Humana Press Inc.

Viera, G.H.F., Martin, A.M., Sampaiao, S.S., Omar, S. & Gonsalves, R.C.F. 1995. Studies on the enzymatic hydrolysis of Brazilian lobster (Panulirus spp.) processing wastes. J. Sci. Food Agric. 69: 61-65.

Yu, S.Y. & Ahmad, R. 1998. Hydrolysis of proteins from Liza subviridis. Asian Fisheries Science 10: 251-257.

 

*Corresponding author; email: wawm@pkrisc.cc.ukm.my

 

 

 

previous