Sains Malaysiana 42(3)(2013): 307–318

 

Penghidroksilpropilan Serabut Tandan Kosong Kelapa Sawit  Menggunakan

Polietilena Glikol (PEG)

(Hydroxypropylation of Empty Fruit Bunches Fibre using Polyethylene glycol (PEG))

 

M.Z. Noreen Farzuhana & S. Zakaria*

Pusat Pengajian Fizik Gunaan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia

43600 Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 27 April 2011/Accepted: 4 October 2012

 

 

ABSTRAK

Penyelidikan ini bertujuan untuk mengkaji tindak balas serabut tandan kosong kelapa sawit (EFBF) melalui kaedah modifikasi kimia dan penghidroksilpropilan menggunakan polietilena glikol (PEG). Peringkat pertama merujuk kepada tindak balas modifikasi kimia menggunakan NaOH dan isopropanol. Peringkat seterusnya adalah penyediaan hidroksilpropil-serabut tandan kosong kelapa sawit (HP-EFBF) menggunakan berat molekul PEG berbeza (6000, 8000 dan 10000). Pencirian yang terlibat dalam kajian ini adalah analisis menggunakan mikroskop elektron imbasan (SEM), spektroskopi inframerah transformasi Fourier (FTIR), analisis termogravimetri (TGA), penentuan kinetik tenaga pengaktifan (Ea), analisis pembelauan sinar-X (XRD), indeks kehabluran Selulosa (CrI) dan pertambahan berat HP-EFBF. Keputusan SEM menunjukkan morfologi permukaan HP-EFBF mula membengkak dan terdapat pembentukan lubang sepanjang permukaan gentian. Spektrum IR juga menunjukkan getaran OH dalam EFBF tanpa rawatan adalah pada 3402 cm-1 tetapi selepas proses penghidroksilpropilan, getaran OH dalam HP-EFBF (10000, 8000 dan 6000) masing-masing sedikit teranjak kepada 3,392, 3,384 dan 3,370 cm-1. TGA menunjukkan kestabilan terma HP-EFBF 6,000 lebih rendah berbanding HP-EFBF 8000 dan 10000. Selepas modifikasi kimia, tenaga pengaktifan, Ea meningkat daripada 32.4 kepada 51.9 kJ/mol berbanding EFBF tanpa rawatan iaitu 12.5 kJ/mol. XRD menunjukkan puncak belauan (002) teranjak kepada sudut 2θ yang lebih kecil dan puncak [(101), (10Î)] lenyap selepas proses penghidroksilpropilan. Indeks kehabluran selulosa, CrI menunjukkan kehabluran EFBF tanpa rawatan berkurang daripada 27% kepada 25% selepas modifikasi kimia. Semakin tinggi berat molekul PEG yang digunakan, semakin tinggi pertambahan berat HP-EFBF.

 

Kata kunci: Hidroksilpropil-EFBF; modifikasi kimia; polietilena glikol (PEG); serabut tandan kosong

 

 

ABSTRACT

The aim of this study was to investigate the reaction of oil palm empty fruit bunches fibre (EFBF) via chemical modification and hydroxypropylation method using polyethylene glycol (PEG). The first stage was the modification of EFB fibre using NaOH and isopropanol. The next stage was the preparation of hydroxypropylated-empty fruit bunches fibre (HP-EFBF), using different molecular weight of PEG (6000, 8000 and 10000). The characterisation involved in this study were conducted by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetry analysis (TGA), determination of kinetic activation energy (Ea), X-ray diffraction (XRD), cellulose crystallinity index (CrI) and weight increament of the HP-EFB fibre. SEM results showed the surface of HP-EFBF swelled and craters formed along the surface of the fibre. IR spectrum also showed OH stretching band in EFB without treatment is 3402 cm-1, but after hydroxypropylation process, the OH stretching band in HP-EFBF (10000, 8000 and 6000) slightly shifted to 3,392, 3,384 and 3370 cm-1, respectively. TGA showed the thermal stability of HP-EFBF 6,000 was lower than HP-EFBF 8,000 and 10000. After chemical modification, the activation energy, Ea increased from 32.4 to 51.9 kJ/mol more than EFB without treatment, 12.5 kJ/mol. XRD showed that diffraction peak (002) shifted to the smaller 2θ angle and the peaks (101, 10Î) disappeared after hydroxypropylation process. Crystallinity index of EFB without treatment decreased from 27% to 25% after chemical modification. The higher the molecular weight of the PEG, the greater the weight increament of the HP-EFBF.

 

Keywords: Chemical modification; empty fruit bunches; hydroxypropyl-EFBF; polyethylene glycol (PEG)

 

REFERENCES

Agrawal, R., Saxena, N.S., Sharma, K.B., Thomas, S. & Sreekala, M.S. 2000. Activation energy and crystallization kinetics of untreated and treated oil palm fibre reinforced phenol formaldehyde composites. Materials Science and Engineering A277: 77-82.

Alam Md. Zahangir, Mamun Abdullah A., Qudsieh Islam Y. & Muyibi Suleyman, A. 2009. Solid state bioconversion of oil palm empty fruit bunches for cellulose enzyme production using a rotary drum bioreactor. Biochemical Engineering Journal 46: 61-64.

Alrios, M.G., Tejado, A., Blanco, M., Mondragon, I. & Labidi, J. 2009. Agricultural palm oil tree residues as raw material for cellulose, lignin and hemicelluloses production by ethylene glycol pulping process. Chemical Engineering Journal 148: 106-114.

Atalla, R.H. 1983. The structure of cellulose: Recent developments. In: Soltes, E.J. (eds). Wood and Agricultural Residues: Research on Use for Feed, Fuels and Chemicals. New York: Academic Press.

Badri, K. & Khairul Anwar, M.A. 2006. Biocomposites from oil palm resources. Journal of Oil Palm Research Special Issue-April: 103-113.

Beall, F.C. & Eicker, H.W. 1970. Thermal Degradation of Wood Components: Review of the Literature. U.S.D.AForest Service Research Paper.

Bjamestad, S. & Dahlman, O. 2002. Chemical compositions of hardwood and softwood pulps employing photoacoustic fourier transform infrared spectroscopy in combination with partial least-square analysis. Analytical Chemistry 74: 5851-5858.

Broido, A. 1969. Asimple, sensitive graphical method of treating thermogravimetric analysis data. Journal of Polymer Science 7: 1761-1773.

Chen, Y., Wang, Y., Wan, J. & Ma, Y. 2010. Crystal and pore structure of wheat straw cellulose fiber during recycling. Cellulose 17(2): 329-338.

Deraman, M., Sarani Zakaria. & Andrianny, Murshidi. 2001. Estimation of crystallinity and crystallite size of cellulose in benzylated fibres of oil palm empty fruit bunches by X-ray diffraction. Japan Journal Applied Physics 40: 3311-3314.

Fengel, D. & Wegener, G. 1989. Wood-Chemistry, Ultrastructure, Reactions. Berlin: Walter de Gruyter.

Hazira, D.H. 2002. Synthesis of polyurethane adhesives from chemical modified oil palm empty fruit bunch fibers. Tesis Sarjana, Universiti Kebangsaan Malaysia, Bangi, Malaysia (tidak diterbitkan).

Laureano-Perez, L., Teymouri, F., Alizadeh, H. & Dale, B.E. 2005. Understanding factors that limit enzymatic hydrolysis of biomass. Applied Biochemistry and Biotechnology 124(1-3): 1081-1089.

Law, K-W., Wan Rosli Wan Daud & Arniza Ghazali. 2007. Morphological and chemical nature of fiber strands of oil palm empty-fruit bunch (OPEFB). Bioresources 2(3): 351-362.

Mwaikambo, L.Y. & Ansell, M.P. 2002. Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. Journal of Applied Polymer Science 84: 2222-2234.

Nakanishi, K. 1969. Infrared Absorption Spectroscopy-Practical. Tokyo: Holden-Day, Inc, San Francisco dan Nankondo Company Limited.

Oujai, S. & Shanks, R.A. 2005. Composition, structure and thermal degradation of hemp cellulose after chemical treatments. Polymer Degradation and Stability 89: 327-335.

Pan, H., Shupe, T-F. & Hse, C-Y. 2007. Characterization of liquefied wood residues from different liquefaction conditions. Journal of Applied Polymer Science 105: 3739-3746.

Rowell, R.M. & Gutzmer, D.I. 1975. Chemical modification of wood. Reaction of alkylene oxide with southern yellow pine. Wood Science 7(3): 240-246.

Rozman, H.D., Ahmadhilmi, K.R. & Abu Bakar, A. 2004. Polyurethane (PU) – oil palm empty fruit bunch (EFB) composites: The effect of EFBG reinforcement in mat form and isocyanate treatment on the mechanical properties. Polymer Testing 23: 559-565.

Shiraishi, N., Itoh, H. & Lonikar, S.V. 1987. Adhesives prepared from hydroxyethylated wood with or without explosion pretreatment. Journal of Wood Chemistry and Technology 7(3): 405-426.

Silverstein, R.M., Bassler, G.C. & Morril, T.C. 1996. Spectrometric Identification of Organic Compounds. 5th ed. New York: John Wiley and Sons.

Singh, J., Kaur, L. & McCarthy, O.J. 2007. Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications. Food Hydrocolloids 21: 1-22.

Sreekala, M.S., Kumaran, M.G & Thomas, S. 1997. Oil palm fibers: Morphology, chemical composition, surface modification and mechanical properties. Journal of Applied Science 66: 821-835.

Tanaka, R., Hirose, S. & Hatakeyama, H. 2008. Preparation and characterization of polyurethane foams using a palm oil–based polyol. Bioresource Technology 99: 3810-3816.

Thring, R.W., Ni, P. & Aharoni, S.M. 2004. Molecular weight effects of the soft segment on the ultimate properties of lignin-derived polyurethanes. International Journal of Polymeric Materials 53: 507-524.

Tserki, V., Zafeiropoulos, N.E., Simon, F. & Panayiotou, C. 2005. Astudy of the effect of acetylation and propionylation surface treatments on natural fibres. Composites: Part A 36: 1110-1118.

Wahid, M.B. 2010. Overview of the Malaysian Oil Palm Industry 2009. http://www.mpob.gov.my (12 Januari 2010).

Yang, P. & Kokot, S. 1996. Thermal analysis of different cellulosic fabrics. Journal of Applied Polymer Science 60: 1137-1146.

Yao, Y., Yoshioka, M. & Shiraishi, N. 1996. Water-absorbing polyurethane foams from liquefied starch. Journal of Applied Polymer Science 60: 1939-1949.

Zeronian, S.H. 1991. Intarcystalline swelling of cellulose. In: Nevell, T. P & Zeronian, S.H. (eds). Cellulose Chemistry and its Application. pp 159-179. New York: Ellis Horwood Limited.

 

 

*Corresponding author; email: sarani_zakaria@yahoo.com

 

 

previous