Sains Malaysiana 42(8)(2013):
1159–1166
Perbandingan Anggaran Parameter Terhadap
Model Kecemerlangan Prestasi Institut
Pengajian Tinggi
Bersandarkan Nilai Teras: Pendekatan Penganggaran
Kebolehjadian Maksimum (ML)
dan Kuasa Dua Terkecil Separa (PLS)
(Comparison of Parameter
Estimates on Value-based Performance Excellence Model for Higher Education Institutes: Approach of
Maximum Likelihood (ML)
and Partial Least Squares (PLS)
Estimations)
Mohd Rashid Ab Hamid
Fakulti Sains dan Teknologi Industri, Universiti
Malaysia Pahang, Lebuhraya Tun Abdul Razak
26300 UMP Kuantan, Pahang, Malaysia
Zainol Mustafa*, Nur Riza Mohd Suradi
Pusat Pengajian Sains Matematik, Fakulti
Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor
D.E.Malaysia
Fazli Idris
Graduate School of Business (GSB), Universiti
Kebangsaan Malaysia
43600 UKM Bangi, Selangor D.E. Malaysia
Mokhtar Abdullah
Universiti Pertahanan Nasional Malaysia, Kem
Sg. Besi, 53000 Kuala Lumpur, Malaysia
Received: 9 May 2012/Accepted: 17 December
2012
ABSTRAK
Pemodelan persamaan struktur (SEM) merupakan analisis statistik
multivariat yang mengkaji hubungan antara konstruk mengikut teori atau kajian
terdahulu melalui model hipotesis yang dibina. Kebiasaannya, kaedah
penganggaran yang digunakan dalam analisis pemodelan ini adalah penganggaran
kebolehjadian maksimum (ML).
Kaedah penganggaran tersebut memerlukan taburan data yang bersifat kenormalan
multivariat di samping memenuhi bilangan sampel yang tertentu. Oleh itu,
penganggaran kuasa dua terkecil separa (PLS)
amat berperanan dalam mengatasi dua kekangan berkenaan dan isu
multikolineariti. Oleh itu makalah ini bertujuan untuk melakukan analisis
perbandingan keputusan pemodelan terhadap anggaran parameter dalam Model
Kecemerlangan Prestasi Institusi Pengajian Tinggi (IPT)
bersandarkan nilai teras bagi mendapatkan model akhir yang mematuhi kedua-dua
teknik penganggaran ML dan PLS berkenaan. Model akhir
merupakan model kecemerlangan yang disemak semula berdasarkan tahap
kesignifikanan secara statistik dan penting secara praktikal bagi semua pekali
lintasan dalam model. Kesimpulannya, kedua-dua teknik penganggaran yang
digunakan saling melengkapi antara satu sama lain dan memberikan nilai tambah
kepada model hipotesis yang diuji.
Kata kunci: Analisis perbandingan;
kebolehjadian maksimum; model kecemerlangan prestasi IPT bersandarkan nilai teras; pemodelan persamaan struktur;
penganggaran kuasa dua terkecil separa
ABSTRACT
Structural equation modeling (SEM) is a multivariate statistical
analysis that examines the relationship between the constructs as posited by
theory or previous studies through the developed hypothesised model. Usually,
the estimation method used in the modeling analysis is the maximum likelihood (ML) estimation. This estimation
method requires data that are multivariate normally distributed while meeting
the required sample size. Following this, partial least squares (PLS) has its roles in overcoming
those constraints and multicollinearity issue. Therefore, this paper aimed to
do comparative analysis of the modeling results on parameter estimates of value-based
performance excellence model for Higher Education Institutions (HEIs)
to obtain a final model that meets the two estimation of ML and PLS. The
final model is the revised model based on the statistical significance and
practically importance for all paths in the model. In conclusion, both
techniques used complement each other and give an added value to the
hypothesized model.
Keywords:
Comparative analysis; maximum likelihood; partial least squares estimation;
structural equation modeling; value-based performance excellence model for HEIs
REFERENCES
Ab Hamid,
M.R., Mustafa, Z., Mohd. Suradi, N.R., Idris, F., & Abdullah, M. 2012a.
Model kecemerlangan IPT berasaskan nilai teras: Pendekatan pemodelan kuasa dua
terkecil separa. Jurnal Pengukuran Kualiti dan Analisis. Dalam
Penilaian.
Ab Hamid,
M.R., Mustafa, Z., Mohd. Suradi, N.R., Idris, F. & Abdullah, M. 2012b.
Value-based performance excellence measurement for higher education
institution: Instrument validation. Quality & Quantity DOI:
10.1007/s11135-012- 9699-y.
Ab Hamid,
M.R., Mustafa, Z., Mohd. Suradi, N.R., Idris, F., Abdullah, M., Yaziz, S.R.,
Ismail@Mustofa, Z. & Ibrahim, A. 2011a. Value-based performance excellence
model for Malaysian Technical Universities: On Bayesian structural equation
modeling (SEM). Batu Pahat, Johor. Malaysian Technical Universities
International Conference on Engineering & Technology (MUiCET 2011).
Ab Hamid,
M.R., Mustafa, Z., Mohd. Suradi, N.R., Idris, F., Abdullah, M. & Ibrahim,
A. 2011b. Value-based performance excellence model: Case studies at Malaysian
Technical Universities. Australian Journal of Basic and Applied Sciences 5(12):
628-633.
Barclay, D.,
Higgins, C. & Thompson, R. 1995. The partial least squares (PLS) approach
to causal modeling: Personal computer adoption and use as an illustration. Technology
Studies 2(2): 285-309.
Barroso, C.,
Carrion, G.C. & Roldan, J.L. 2010. Applying maximum likelihood and PLS on
different sample sizes: Studies on SERVQUAL model and employee behavior model.
In Handbook of Partial Least Squares, edited by Vinzi, V.E., Chin, W.W.,
Henseler, J. & Wang, H. Springer Handbooks of Computational Statistics:
DOI: 10.1007/978- 3-540-32827-8_20.
Bollen, K.A.
1989. Structural Equations with Latent Variables. New York: John Wiley
& Sons.
Buhi, E.R.,
Goodson, P. & Neilands, T.B. 2007. Structural equation modeling: A primer
for health behavior researchers. American Journal of Health Behavior 31(1):
74-85.
Byrne, B.M.
2010. Structural Equation Modeling with AMOS. Edisi ke-2. New York:
Taylor & Francis Group.
Cassel,
C.M., Hackl, P. & Westlund, A.H. 1999. Robustness of partial least-squares
method for estimating latent variable quality structures. Journal of Applied
Statistics 26(4): 435- 446.
Cassel,
C.M., Hackl, P. & Westlund, A.H. 2000. On measurement of intangible assets:
A study of robustness of partial least squares. Total Quality Management 11(7):
897-907.
Chua, Y.P.
2009. Statistik Penyelidikan Lanjutan. Kuala Lumpur: McGraw Hill
Malaysia.
Fornell, C.,
Johnson, M.D., Anderson, E.W., Jaesung, C. & Bryant, B.E. 1996. The
American customer satisfaction index: Nature, purpose and findings. Journal
of Marketing 60(4): 7-18.
Fornell,
C. & Bookstein, F.L. 1982. Two structural equation models: LISREL and PLS
applied to customer exit-voice theory. Journal of Marketing Research 19:
440-452. variables and
measurement error. Journal of Marketing Research 48: 39-50.
Gefen, D., Straub, D.W. & Boudreau,
M.C. 2000. Structural equation modeling and regression: Guidelines for research
practice. Communications of the Association for Information Systems 4(7):
1-79.
Ghosh, S., Handfield, R.B., Kannan, V.R.
& Tan, K.C. 2003. A structural model analysis of the Malcolm Baldrige
National Quality Award Framework. Int. J. Management and Decision Making 4(4):
289-311.
Grewal, R., Cote, J.A. & Baumgartner,
H. 2004. Multicollinearity and measurement error in structural equation models:
Implications for theory testing. Marketing Science 23(4): 519-529.
Habshah, M. & Azmi, J. 2006. The
misuse of statistical techniques in research: An observation and experiences. Prosiding
Seminar Kebangsaan Sains Kuantitatif.
Hair, J.F., Black, W.C., Babin, B.J.
& Anderson, R.E. 2010. Multivariate Data Analysis. 7 ed. Upper
Saddle River, New Jersey: Prentice Hall.
Hansmann, K.W. & Ringle, C.M. 2005.
Enterprise-networks and strategic success – An empirical analysis. In Strategies
for Cooperation, edited by Theurl, T. & Meyer, E.C. hlm. 133-152.
Aachen.
Henseler, J., Ringle, C.M. &
Sinkovics, R.R. 2009. The use of partial least squares path modeling in
international marketing. Advances in International Marketing 20:
277-319.
Hides, M.T., Davies, J. & Jackson, S.
2004. Implementation of EFQM excellence model self-assessment in the UK Higher
Education Sector – Lessons learned from other sectors. The TQM
Magazine 16(3): 194-201.
Holbert, R.L. & Stephenson, M.T.
2002. Structural equation modeling in the communication sciences (1995-2000). Human
Communication Research 28(4): 531-551.
Inkpen, A.C. & Birkenshaw, J. 1994.
International joint ventures and performance: An interorganizational
perspective. International Business Review 3(3): 201-217.
Jagpal, H.S. 1982. Multicollinearity in
structural equation models with unobservable variables. Journal of Marketing
Research 19: 431-439.
Jaskyte, K. 2004. Transformational
leadership, organizational culture and innovativeness in nonprofit
organisations. Nonprofit Management & Leadership 15(2): 153-168.
Kline, R.B. 2011. Principles and
Practice of Structural Equation Modeling. 3rd ed. New York: The Guilford
Press.
MacCallum, R.C., Roznowski, M., Mar, C.M.
& Reith, J.V. 1994. Alternative strategies for cross-validation of
covariance structure models. Multivariate Behavioral Research 29(1):
1-32.
Malaysia Productivity Corporation (MPC).
2010. Guidebook on Malaysia Business Excellence Model: Transforming Business
through Productivity & Innovation. Petaling Jaya: Malaysia Productivity
Corporation.
Mohd Zaidi, I. & Mohd Sani, B. 2011.
Good governance - adab oriented tadbir in Islam. Kuala Lumpur: Institute
Islamic Understanding Malaysia (IKIM).
Nik Mustapha, N.H. 2011. Pentingnya
penghayatan akhlak dalam meningkat kualiti pengurusan organisasi. Majlis
Penyampaian Sijil dan Seminar MS1900:2005 Sistem Pengurusan Kualiti Keperluan
dari Perspektif Islam. Institut Kefahaman Islam Malaysia (IKIM).
Norliza, A., Maizah Hura, A. &
Robiah, A. 2006. A comparative study on some methods for handling
multicollinearity problems. Matematika 22(2): 109-119.
Oakland, J. 1999. Winning Performance
through Business Excellence. Credit Control. 20(7): 23-31.
Oakland, J.S. & Tanner, S.J. 2008.
The relationship between business excellence and performance – An
empirical study using Kanji’s leadership excellence model. Total Quality
Management and Business Excellence 19(7–8): 733-749.
Omil, J.C., Lorenzo, P.C. & Liste,
A.V. 2011. The power of intangibles in high-profitability firms. Total
Quality Management & Business Excellence 22(1): 29-42.
Sang, S.L., Lee, J.D. & Lee, J. 2010.
E-government adoption in Cambodia: A partial least squares approach. Transforming
Government: People, Process and Policy 4(2): 138-157.
Shah, R. & Goldstein, S.M. 2006. Use
of structural equation modeling in operations management research: Looking back
and forward. Journal of Operations Management 24: 148-169.
Schumacker, R.E. & Lomax, R.G. 2004. A
Beginner’s Guide to Structural Equation Modeling. Taylor & Francis
Group.
Suhr, D.D. 2002. SEM for Health,
Business, and Education. Proceedings from the 27th Annual SAS® Users Group
International Conference. April 14-17, Orlando, Florida.
Westlund, A.H., Kallstrom, M. &
Parmler, J. 2008. SEM-based customer satisfaction measurement: On
multicollineary and robust PLS estimation. Total Quality Management and
Business Excellence 19(7-8): 855-869.
*Corresponding author; email: zbhm@ukm.my
|