Sains Malaysiana 42(8)(2013): 1159–1166

 

Perbandingan Anggaran Parameter Terhadap Model Kecemerlangan Prestasi Institut Pengajian Tinggi

 Bersandarkan Nilai Teras: Pendekatan Penganggaran Kebolehjadian Maksimum (ML)

dan Kuasa Dua Terkecil Separa (PLS)

(Comparison of Parameter Estimates on Value-based Performance Excellence Model for Higher Education Institutes: Approach of Maximum Likelihood (ML) and Partial Least Squares (PLS) Estimations)

 

Mohd Rashid Ab Hamid

Fakulti Sains dan Teknologi Industri, Universiti Malaysia Pahang, Lebuhraya Tun Abdul Razak

26300 UMP Kuantan, Pahang, Malaysia

 

Zainol Mustafa*, Nur Riza Mohd Suradi

Pusat Pengajian Sains Matematik, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor D.E.Malaysia

 

Fazli Idris

Graduate School of Business (GSB), Universiti Kebangsaan Malaysia

43600 UKM Bangi, Selangor D.E. Malaysia

 

Mokhtar Abdullah

Universiti Pertahanan Nasional Malaysia, Kem Sg. Besi, 53000 Kuala Lumpur, Malaysia

 

Received: 9 May 2012/Accepted: 17 December 2012

 

ABSTRAK

Pemodelan persamaan struktur (SEM) merupakan analisis statistik multivariat yang mengkaji hubungan antara konstruk mengikut teori atau kajian terdahulu melalui model hipotesis yang dibina. Kebiasaannya, kaedah penganggaran yang digunakan dalam analisis pemodelan ini adalah penganggaran kebolehjadian maksimum (ML). Kaedah penganggaran tersebut memerlukan taburan data yang bersifat kenormalan multivariat di samping memenuhi bilangan sampel yang tertentu. Oleh itu, penganggaran kuasa dua terkecil separa (PLS) amat berperanan dalam mengatasi dua kekangan berkenaan dan isu multikolineariti. Oleh itu makalah ini bertujuan untuk melakukan analisis perbandingan keputusan pemodelan terhadap anggaran parameter dalam Model Kecemerlangan Prestasi Institusi Pengajian Tinggi (IPT) bersandarkan nilai teras bagi mendapatkan model akhir yang mematuhi kedua-dua teknik penganggaran ML dan PLS berkenaan. Model akhir merupakan model kecemerlangan yang disemak semula berdasarkan tahap kesignifikanan secara statistik dan penting secara praktikal bagi semua pekali lintasan dalam model. Kesimpulannya, kedua-dua teknik penganggaran yang digunakan saling melengkapi antara satu sama lain dan memberikan nilai tambah kepada model hipotesis yang diuji.

 

Kata kunci: Analisis perbandingan; kebolehjadian maksimum; model kecemerlangan prestasi IPT bersandarkan nilai teras; pemodelan persamaan struktur; penganggaran kuasa dua terkecil separa

 

ABSTRACT

Structural equation modeling (SEM) is a multivariate statistical analysis that examines the relationship between the constructs as posited by theory or previous studies through the developed hypothesised model. Usually, the estimation method used in the modeling analysis is the maximum likelihood (ML) estimation. This estimation method requires data that are multivariate normally distributed while meeting the required sample size. Following this, partial least squares (PLS) has its roles in overcoming those constraints and multicollinearity issue. Therefore, this paper aimed to do comparative analysis of the modeling results on parameter estimates of value-based performance excellence model for Higher Education Institutions (HEIs) to obtain a final model that meets the two estimation of ML and PLS. The final model is the revised model based on the statistical significance and practically importance for all paths in the model. In conclusion, both techniques used complement each other and give an added value to the hypothesized model.

 

Keywords: Comparative analysis; maximum likelihood; partial least squares estimation; structural equation modeling; value-based performance excellence model for HEIs

REFERENCES

Ab Hamid, M.R., Mustafa, Z., Mohd. Suradi, N.R., Idris, F., & Abdullah, M. 2012a. Model kecemerlangan IPT berasaskan nilai teras: Pendekatan pemodelan kuasa dua terkecil separa. Jurnal Pengukuran Kualiti dan Analisis. Dalam Penilaian.

Ab Hamid, M.R., Mustafa, Z., Mohd. Suradi, N.R., Idris, F. & Abdullah, M. 2012b. Value-based performance excellence measurement for higher education institution: Instrument validation. Quality & Quantity DOI: 10.1007/s11135-012- 9699-y.

Ab Hamid, M.R., Mustafa, Z., Mohd. Suradi, N.R., Idris, F., Abdullah, M., Yaziz, S.R., Ismail@Mustofa, Z. & Ibrahim, A. 2011a. Value-based performance excellence model for Malaysian Technical Universities: On Bayesian structural equation modeling (SEM). Batu Pahat, Johor. Malaysian Technical Universities International Conference on Engineering & Technology (MUiCET 2011).

Ab Hamid, M.R., Mustafa, Z., Mohd. Suradi, N.R., Idris, F., Abdullah, M. & Ibrahim, A. 2011b. Value-based performance excellence model: Case studies at Malaysian Technical Universities. Australian Journal of Basic and Applied Sciences 5(12): 628-633.

Barclay, D., Higgins, C. & Thompson, R. 1995. The partial least squares (PLS) approach to causal modeling: Personal computer adoption and use as an illustration. Technology Studies 2(2): 285-309.

Barroso, C., Carrion, G.C. & Roldan, J.L. 2010. Applying maximum likelihood and PLS on different sample sizes: Studies on SERVQUAL model and employee behavior model. In Handbook of Partial Least Squares, edited by Vinzi, V.E., Chin, W.W., Henseler, J. & Wang, H. Springer Handbooks of Computational Statistics: DOI: 10.1007/978- 3-540-32827-8_20.

Bollen, K.A. 1989. Structural Equations with Latent Variables. New York: John Wiley & Sons.

Buhi, E.R., Goodson, P. & Neilands, T.B. 2007. Structural equation modeling: A primer for health behavior researchers. American Journal of Health Behavior 31(1): 74-85.

Byrne, B.M. 2010. Structural Equation Modeling with AMOS. Edisi ke-2. New York: Taylor & Francis Group.

Cassel, C.M., Hackl, P. & Westlund, A.H. 1999. Robustness of partial least-squares method for estimating latent variable quality structures. Journal of Applied Statistics 26(4): 435- 446.

Cassel, C.M., Hackl, P. & Westlund, A.H. 2000. On measurement of intangible assets: A study of robustness of partial least squares. Total Quality Management 11(7): 897-907.

Chua, Y.P. 2009. Statistik Penyelidikan Lanjutan. Kuala Lumpur: McGraw Hill Malaysia.

Fornell, C., Johnson, M.D., Anderson, E.W., Jaesung, C. & Bryant, B.E. 1996. The American customer satisfaction index: Nature, purpose and findings. Journal of Marketing 60(4): 7-18.

Fornell, C. & Bookstein, F.L. 1982. Two structural equation models: LISREL and PLS applied to customer exit-voice theory. Journal of Marketing Research 19: 440-452. variables and measurement error. Journal of Marketing Research 48: 39-50.

Gefen, D., Straub, D.W. & Boudreau, M.C. 2000. Structural equation modeling and regression: Guidelines for research practice. Communications of the Association for Information Systems 4(7): 1-79.

Ghosh, S., Handfield, R.B., Kannan, V.R. & Tan, K.C. 2003. A structural model analysis of the Malcolm Baldrige National Quality Award Framework. Int. J. Management and Decision Making 4(4): 289-311.

Grewal, R., Cote, J.A. & Baumgartner, H. 2004. Multicollinearity and measurement error in structural equation models: Implications for theory testing. Marketing Science 23(4): 519-529.

Habshah, M. & Azmi, J. 2006. The misuse of statistical techniques in research: An observation and experiences. Prosiding Seminar Kebangsaan Sains Kuantitatif.

Hair, J.F., Black, W.C., Babin, B.J. & Anderson, R.E. 2010. Multivariate Data Analysis. 7 ed. Upper Saddle River, New Jersey: Prentice Hall.

Hansmann, K.W. & Ringle, C.M. 2005. Enterprise-networks and strategic success – An empirical analysis. In Strategies for Cooperation, edited by Theurl, T. & Meyer, E.C. hlm. 133-152. Aachen.

Henseler, J., Ringle, C.M. & Sinkovics, R.R. 2009. The use of partial least squares path modeling in international marketing. Advances in International Marketing 20: 277-319.

Hides, M.T., Davies, J. & Jackson, S. 2004. Implementation of EFQM excellence model self-assessment in the UK Higher Education Sector – Lessons learned from other sectors. The TQM Magazine 16(3): 194-201.

Holbert, R.L. & Stephenson, M.T. 2002. Structural equation modeling in the communication sciences (1995-2000). Human Communication Research 28(4): 531-551.

Inkpen, A.C. & Birkenshaw, J. 1994. International joint ventures and performance: An interorganizational perspective. International Business Review 3(3): 201-217.

Jagpal, H.S. 1982. Multicollinearity in structural equation models with unobservable variables. Journal of Marketing Research 19: 431-439.

Jaskyte, K. 2004. Transformational leadership, organizational culture and innovativeness in nonprofit organisations. Nonprofit Management & Leadership 15(2): 153-168.

Kline, R.B. 2011. Principles and Practice of Structural Equation Modeling. 3rd ed. New York: The Guilford Press.

MacCallum, R.C., Roznowski, M., Mar, C.M. & Reith, J.V. 1994. Alternative strategies for cross-validation of covariance structure models. Multivariate Behavioral Research 29(1): 1-32.

Malaysia Productivity Corporation (MPC). 2010. Guidebook on Malaysia Business Excellence Model: Transforming Business through Productivity & Innovation. Petaling Jaya: Malaysia Productivity Corporation.

Mohd Zaidi, I. & Mohd Sani, B. 2011. Good governance - adab oriented tadbir in Islam. Kuala Lumpur: Institute Islamic Understanding Malaysia (IKIM).

Nik Mustapha, N.H. 2011. Pentingnya penghayatan akhlak dalam meningkat kualiti pengurusan organisasi. Majlis Penyampaian Sijil dan Seminar MS1900:2005 Sistem Pengurusan Kualiti Keperluan dari Perspektif Islam. Institut Kefahaman Islam Malaysia (IKIM).

Norliza, A., Maizah Hura, A. & Robiah, A. 2006. A comparative study on some methods for handling multicollinearity problems. Matematika 22(2): 109-119.

Oakland, J. 1999. Winning Performance through Business Excellence. Credit Control. 20(7): 23-31.

Oakland, J.S. & Tanner, S.J. 2008. The relationship between business excellence and performance – An empirical study using Kanji’s leadership excellence model. Total Quality Management and Business Excellence 19(7–8): 733-749.

Omil, J.C., Lorenzo, P.C. & Liste, A.V. 2011. The power of intangibles in high-profitability firms. Total Quality Management & Business Excellence 22(1): 29-42.

Sang, S.L., Lee, J.D. & Lee, J. 2010. E-government adoption in Cambodia: A partial least squares approach. Transforming Government: People, Process and Policy 4(2): 138-157.

Shah, R. & Goldstein, S.M. 2006. Use of structural equation modeling in operations management research: Looking back and forward. Journal of Operations Management 24: 148-169.

Schumacker, R.E. & Lomax, R.G. 2004. A Beginner’s Guide to Structural Equation Modeling. Taylor & Francis Group.

Suhr, D.D. 2002. SEM for Health, Business, and Education. Proceedings from the 27th Annual SAS® Users Group International Conference. April 14-17, Orlando, Florida.

Westlund, A.H., Kallstrom, M. & Parmler, J. 2008. SEM-based customer satisfaction measurement: On multicollineary and robust PLS estimation. Total Quality Management and Business Excellence 19(7-8): 855-869.

 

*Corresponding author; email: zbhm@ukm.my

 

 

previous