Sains Malaysiana 44(8)(2015): 1077–1084
Growth
Profile and Fatty Acid Accumulation of Four Chaetoceros
Taxa Isolated from Coastal Water of Pahang, Malaysia
(Profil
Tumbesaran dan
Pengumpulan Asid Lemak oleh Empat
Takson Chaetoceros
diasingkan
dari Pesisiran Pantai Pahang, Malaysia)
M.A.M
FUAD1*,
N.
MOHAMMAD-NOOR2,
A.K.C.
JALAL2
& B.Y. KAMARUZZAMAN2
1Institut Kesihatan Umum, Kementerian Kesihatan Malaysia,
Jalan Bangsar, 50590 Kuala Lumpur,
Wilayah Persekutuan, Malaysia
2Kulliyyah of Science,
International Islamic University Malaysia, Jalan
Istana, Bandar Indera Mahkota,
25200 Kuantan, Pahang Darul Makmur, Malaysia
Received: 14 March
2014/Accepted: 2 April 2015
ABSTRACT
This indoor study was aimed
to analyze the production of fatty acids with their growth profile
from few marine algae under the genus Chaetoceros isolated
from coastal water of Pahang, Malaysia. The algae were established
into culture using standard marine media (f/2 media) and the variation
of fatty acid for each species was determined using GCMS. Statistical analysis of
one-way ANOVA was performed to evaluate the significant and homogeneity
data on the growth of each alga and total fatty acid percentage
obtained. The results showed that four taxa were successfully cultivated
and identified as Chaetoceros baculites,
Chaetoceros anastomosans,
Chaetoceros affinis var. willei and Chaetoceros affinis var. affinis. Out
of four Chaetoceros, C. baculites
showed the highest growth rate (0.75 cell.day-1)
and division’s value (1.08) while C. anastomosans
showed the highest doubling time value (8.66). Statistical analysis
showed that all species have significantly different growth rate
(p<0.05). Myristic acid was the main component for fatty acid storage
for C. baculites, C. anastomosans
and C. affinis var. willei
whereas palmitic acid for C. affinis
var. affinis. All species contained about 35 to 75% of total
percentage fatty acids throughout the growth day. Based on total
percentage, both affinis varieties had
high fatty acid percentage compared with the other two species with
the total percentage of more than 70%. As a conclusion, all four
taxa are suitable to be used in lipid industry in Malaysia with
C. affinis var. affinis is the best candidate for bio-fuel industry and
C. anastomosans for pharmaceutical
industry.
Keywords: Chaetoceros; fatty acids; growth; indoor;
industry
ABSTRAK
Kajian secara dalam persekitaran
dijalankan untuk
menganalisis pengeluaran asid lemak dengan
profil tumbesaran
daripada beberapa spesies alga marin
di bawah genus Chaeotoceros yang
diasingkan dari
pesisiran pantai Pahang, Malaysia.
Kesemua alga dimantapkan
dalam bentuk
kultur dengan
menggunakan media marin
yang dipiawai (f/2 media) dan
variasi asid
lemak untuk setiap
spesies ditentukan
dengan menggunakan GCMS.
Analisis
statistik ANOVA satu-hala
digunakan untuk
menilai kesignifikan dan kehomogenan data ke atas tumbesaran
setiap alga serta
jumlah peratusan asid lemak yang diterima. Hasil menunjukkan empat
takson berjaya
dikulturkan dan dikenal pasti sebagai
Chaetoceros baculites, Chaetoceros anastomosans, Chaetoceros affinis var. willei dan Chaetoceros affinis var. affinis. Daripada empat spesies tersebut, C. baculites menunjukkan
kadar pertumbuhan
yang tinggi (0.75 cell.day-1)
dan nilai pendua yang tinggi (1.08) manakala C. anastomosans menunjukkan kadar masa
pendua yang tinggi (8.66). Analisis statistik menunjukkan kesemua spesies mempunyai kadar pertumbuhan
yang bererti (p<0.05). Asid miristik
merupakan komponen
simpanan asid lemak
bagi C.
baculites, C. anastomosans dan C. affinis
var. willei
manakala asid palmitik
bagi C.
affinis var. affinis. Kesemua spesies
mengandungi lebih
kurang 35 hingga 75% jumlah peratusan asid lemak mengikut
hari tumbesaran. Berdasarkan
jumlah peratusan,
kedua-dua variasi affinis mempunyai jumlah peratusan asid lemak yang tinggi berbanding dua spesies yang lain dengan jumlah peratusan
melebihi 70%. Kesimpulannya,
kesemua empat
takson adalah sesuai
digunakan di dalam
industri lipid di Malaysia dengan
C. affinis var. affinis
merupakan calon
yang sesuai bagi
industri bio-bahan api dan
C. anastomosans bagi
industri farmaseutikal.
Kata kunci: Asid
lemak; Chaetoceros; dalam
persekitaran; industri;
tumbesaran
REFERENCES
Ainie, K., Lin, S.W., Ai, T.Y., Nor Aini, I., Mokhtar, Y., Sue, T.T. & Nuzul,
A.I. 2005. MPOB Test Method.
Malaysian Palm Oil Board: Ministry of Plantation Industries
and Commodities.
Andersen,
R.A. 2005. Algal Culturing Technique.
Salt Lake City: Elseiver Academic
Press.
Asulabh, K.S.,
Supriya, G. & Ramachandra, T.V. 2012. Effect
of salinity concentrations on growth rate and lipid concentration
in Microcystis Sp., Chlorococcum
Sp. and Chaetoceros Sp.
LAKE 2012: National Conference on Conservation and Management
of Wetland Ecosystems. Energy & Wetlands Research Group,
Centre for Ecological Sciences, Indian Institute of Science.
Be´ rard-Therriault, L., Poulin, M. & Bosse´, L. 1999. Guide
d’identification du phytoplancton
marin de l’estuaire
et du golfe du Saint-Laurent incluant
e´ galement certains
protozoaires. Publication spéciale
canadienne des sciences halieutiques
et aquatiques
128: 1-387.
Carrillo,
C., Cavia, M. del
M. & Alonso-Torre, S. 2012. Role of oleic acid in immune system;
mechanism of action: A review. Nutricion
Hospitalaria 27(4): 978-990.
Chen, C.Y. & Durbin, E.G. 1994. Effects of pH on the growth and carbon uptake of marine phytoplankton.
Marine Ecology- Program Series 109: 83-94.
De Castro, A.S., Maria, V. & Garcia, T. 2005. Growth
and biochemical composition of the diatom Chaetoceros
cf. wighamii brightwell
under different temparature, salinity
and carbon dioxide levels. I. Protein, carbohydrates and lipids.
Aquaculture 246: 405-412.
Fábregas, J.,
Maseda, A., Domínguez,
A. & Otero, A. 2004. The cell composition of Nannochloropsis sp. changes under different
irradiances in semicontinuous culture.
World Journal of Microbiology Biotechnology 20: 31-35.
Fogg, G.E. & Thake, B. 1987. Algae Cultures and Phytoplankton Ecology. 3rd
ed. Wisconsin: University of Wisconsin Press.
Go,
S., Lee, S.J., Jeong, G.T. & Kim,
S.K. 2012. Factors affecting the growth and the oil accumulation of marine microalgae,
Tetraselmis suecica.
Bioprocess and Biosystem Engineering
35(1-2): 145-150.
Gordillo, F.J.L., Goutx, M., Figueroa,
F.L. & Niell, F.X. 1998. Effects
of light intensity, CO2 and nitrogen supply on lipid
class composition of Dunaliella
viridis. Journal of Applied Phycology 10: 135-144.
Guschina, I.A.
& Harwood, J.L. 2009. Algal lipids
and effect of the environment on their biochemistry. In Lipids in Aquatic Ecosystems. Berlin, Germany: Springer.
pp. 1-24.
Harrison, P.J. & Berges, J.A. 2004. Chapter
3: Marine Culture Media. Essentials of Medical
Geology. Salt Lake City: Academic Press. pp. 21-34.
Harwood, J.L. 1998. Involvement of chloroplast lipids in the reaction
of plants submitted to stress. In Lipids in Photosynthesis: Structure,
Function and Genetics, edited by Siegenthaler,
P.A. & Murata, N. Netherlands: Springer.
Advances in Photosynthesis and Respiration Series 6: 287-302.
Jensen, K.G. & Moestrup,
Ø. 1998. The genus Chaetoceros
(Bacillariophyceae) in inner Danish
coastal waters. Opera Bot. 133: 1-68.
Kalacheva, G., Zhila, N., Volova, T. & Gladyshev, M. 2002. The effect of temperature on the lipid composition of the green
alga Botryococcus sp. Microbiology
71(3): 286-293.
Khatoon, H., Yusoff, F.M.,
Banerjee, S., Shariff, M. & Mohamed,
S. 2007. Use of periphytic cyanobacterium
and mixed diatoms coated substrate for improving water quality,
survival and growth of Penaeus monodon Fabricius
postlarvae. Aquaculture 271: 196-205.
Lakeridge,
S.W. & Olympia, W.A. 2000. Pelargonic Acid. Olympia: Thurston County Health Department. Review
on 2009.
Mansour,
M.P., Volkman, J.K. & Blackburn, S.I.
2003. The effect of growth phase on the lipid class, fatty acid and sterol
composition in the marine dinoflagellate, Gymnodinium
sp. in batch culture. Phytochemistry
63: 145-153.
Mata,
T.M., Martins, A.A. & Caetano, N.S. 2010. Microalgae for
biodiesel production and other applications: A review. Renewable
and Sustainable Energy Reviews 14(1): 217-232.
Mendez,
J.A., Vellon, L., Colomer,
R. & Lupu, R. 2005. Oleic acid, the
main monounsaturated fatty acid of olive oil, suppresses Her-2/neu (erbB-2) expression and synergistically enhances the growth
inhibitory effects of trastuzumab (Herceptin
TM) in breast cancer cells with Her-2/neu
oncogene amplification. Oxford Journals 16(3): 359-371.
Mendiola, J.A., Torres,
C.F., Toré, A., Martin-Álvarez,
P.J., Santoyo, S., Arredondo, B.O., Señoráns, F.J., Cifuentes, A. &
Ibáñez, E. 2007. Use of supercritical CO2 to obtain extracts with
antimicrobial activity from Chaetoceros
muelleri microalga. A correlation with
their lipidic content. European
Food Research Technology 224: 505-510.
Metting, F. 1996. Biodiversity and application of microalgae. Journal of Industrial
Microbiology 17(5-6): 477-489.
Mohammad-Noor,
N. 2012.
Chapter 13: Scanning electron microscope. Basic
Knowledge in Marine Sciences. 1st ed. International Islamic
University Malaysia: IIUM Press. pp. 1-100.
Orhan,
I., Sener, B. & Atici,
T. 2003.
Fatty acid distribution in the lipid extracts of various algae.
Chemistry of Natural Compound 39(2): 167-170.
Pernet,
F., Tremblay, R., Demers, D. & Roussy,
M. 2003. Variation of lipid class and fatty acid composition of Chaetoceros muelleri and
Isochrysis sp. grown in
a semicontinuous system. Aquaculture 221: 393-406.
Rika
Partiwi, A., Dahrul,
S., Linawati, H., Lily Maria, G.P. & Maggy,
T.S. 2009.
Fatty acid synthesis by Indonesian Marine Diatom,
Chaetoceros gracilis.
HAYATI Journal of Biosciences 16(4): 151-156.
Rines,
J.E.B. & Theriot, E.C. 2003. Systematics of
Chaetocerotaceae (Bacillariophyceae):
I. A phylogenetic analysis of the family. Phycological
Research 51(2): 83-98.
Singh, J. &
Gu, S. 2010. Commercialization
potential of microalgae for biofuels production. Renewable
Sustainable Energy Reviews 14(9): 2596-2610.
Talukdar,
J., Kalita, M.C. & Goswami,
B.C. 2012.
Effects of salinity on growth and total lipid content of the biofuel
potential microalga Ankistro-desmus
falcatus (Corda) Ralfs. International Journal of Scientific and Engineering
Research 3(7): 1-7.
Thompson, G.A.
Jr. 1994. Lipids and membrane function in green algae. Biochimica
et Biophysica
Acta 1302: 17-45.
Thompson,
P.A., Harisson, P.J. & Whyte, J.N.C.
1990. The influence of irradiance on the fatty acid composition of phytoplankton.
Journal of Phycology 26: 278-288.
Tin Win, D. 2005.
Oleic acid - The anti-breast cancer component
in olive oil. Australian Journal of Technology
9(2): 75-78.
Tornabene,
T.G., Holzer, G., Lien, S. & Burris,
N. 1983. Lipid composition
of the nitrogen starved green alga Neochloris
oleoabundans. Enzyme and Microbial
Technology 5(6): 435-440.
Tsuzuki,
M., Ohnuma, E., Sato, N., Takaku,
T. & Kawaguchi, A. 1990. Effects of CO2
concentration during growth on fatty acid composition in microalgae.
Plant Physiology 93: 851-856.
Yang,
Z.H., Miyahara, H. & Hatanaka, A.
2011. Chronic administration
of palmitoleic acid reduces insulin resistance
and hepatic lipid accumulation in KK-Ay Mice with genetic type 2
diabetes. Lipids in Health and Disease.
10: 120.
Yanqun, L., Mark, H.,
Bei, W., Nan, W. & Christopher, Q.L. 2008. Effects of nitrogen sources on cell growth and lipid accumulation
of green alga Neochloris oleoabundans. Applied Microbiology and Biotechnology
81(4): 629-636.
*Corresponding author; email: crystal_fuad@yahoo.com.sg
|