Sains Malaysiana 44(8)(2015): 1183–1188
Separation of Geraniol from Citronellol
by Selective Oxidation of Geraniol to Geranial
(Pengasingan Geraniol daripada Sitronelol melalui Pengoksidaan Memilih Geraniol kepada Geranial)
DANIEL
CHONG
JUN
WENG1,
JALIFAH
BINTI LATIP1*, SITI
AISHAH
BINTI HASBULLAH1 & HARJONO
SASTROHAMIDJOJO2
1School of Chemical Sciences &
Food Technology, Faculty of Science and Technology
University
Kebangsaan Malaysia, 43600 Bangi,
Selangor Darul Ehsan, Malaysia
2Department of Chemistry, Gadjah Mada University, Yogyakarta,
Indonesia
Received:
4 December 2014/Accepted: 9 April 2015
ABSTRACT
Rhodinol is a mixture of geraniol and citronellol.
It is the second fraction in fractional distillation of commercially
grown Cymbopogon nardus.
The physical and chemical similarities of these two compounds made
them inseparable. The individual use of each compound is of great
importance. A selective oxidation (hydrogen peroxide activated by
platinum black) of geraniol (in rhodinol)
to geranial was done while remaining citronellol
intact in order to separate the two compounds into different chemical
functionality. A yield of 81% geranial achieved while minimizing
citronellal formation from citronellol
to 17%. Chemical separation using sodium hydrogen sulfite (NaHSO3)
was done to separate the aldehydes from the unreacted citronellol.
Purification using fractional distillation was done to obtain pure
geraniol and remove minor fraction of citronellal.
Keywords: Geranial;
geraniol; oxidation; rhodinol; selective
ABSTRAK
Rodinol adalah sebatian
yang terdiri daripada
geraniol dan sitronelol. Dengan menggunakan kaedah
penyulingan berperingkat,
rodinol adalah pecahan kedua Cymbopogon
nardus. Kedua-dua
sebatian ini tidak
boleh diasingkan
disebabkan ciri fizikal dan kimia
yang seiras. Kegunaan geraniol dan sitronelol sebagai sebatian yang berasingan adalah penting daripada segi industri. Dalam kajian ini, pengoksidaan
memilih (hidrogen
peroksida yang diaktifkan oleh platinum hitam) geraniol (dalam rodinol) kepada geranial dilakukan sementara sitronelol kekal utuh supaya
kedua-dua sebatian
ini boleh diasingkan
dengan keadaan
fungsi kimia yang berlainan. Tindak balas ini memberikan hasil sebanyak 81% geranial dan berjaya meminimumkan penghasilan sitronelal daripada sitronelol kepada 17%. Dengan menggunakan cara
pengasingan kimia,
hidrogen sulfit (NaHSO3)
digunakan untuk
mengasingkan aldehid daripada sitronelol. Akhirnya, pecahan kecil sitronelal
diasingkan daripada
geraniol tulen dengan
menggunakan penyulingan berperingkat.
Kata kunci: Geranial; geraniol; memilih; pengoksidaan; rodinol
REFERENCES
Abad, A., Corma, A. & García, H. 2007. Supported gold nanoparticles for aerobic, solventless
oxidation of allylic alcohols. Pure and Applied Chemistry
79(11): 1847-1854.
Armarego, W.L.F. & Chai, C. 2009. Purification of Laboratory Chemicals. 6th ed. Burlington,
MA: Butterworth-Heinemann.
Byenkya, G.S., Gumisiriza, G. & Kasigwa, H. 2013. Evaluation of control stradegies for Cymbopogon nardus in
grazing areas of Uganda. Journal of Agricultural Science
and Technology B 3: 656-660.
Dowthwaite, S.V. 2009. Empowering
the independent perfumer. The Professional
Perfumer’s Bulletin © 3.01-3.28. pp. 1-39.
Ganjewala, D. 2009. Cymbopogon essential oils: Chemical compositions and bioactivities.
International Journal of Essential Oil Therapeutics 3: 56-65.
Gholizadeh, M., Mohammadpoor-Baltork, I. & Kharamesh, B. 2004. Selective oxidation of benzylic and allylic alcohols using strontium
manganate in the presence of lewis
acids in solution and under solvent-free conditions. Bulletin
of the Korean Chemical Society 25(4): 566-568.
Gilpin, S., Hui, X. & Maibach, H. 2010. In vitro human penetration of geraniol
and citronellol. Dermatitis
21: 41-48.
Haake, M., Gerlach, T. & Funke, F. 2004. U.S.
Patent 6743956 B1.
Join, B., Möller, K., Ziebart, C., Schröder, K., Gördes, D., Thurow, K., Spannenberg, A., Junge, K. &
Beller, M. 2011. Selective iron-catalyzed oxidation of benzylic and allylic alcohols.
Advanced Synthesis & Catalysis 353(16): 3023- 3030.
Kon, Y., Yazawa, H., Usui,
Y. & Sato, K. 2008. Chemoselective oxidation of alcohols
by a H2O2-Pt
black system under organic solvent- and halide-free conditions.
Chemistry, An Asian Journal 3(8-9):
1642-1648.
Laksmono, J.A., Agustian, E. & Adilina, I.B. 2007. Predicting the azeotrophic of citronellal
enrichment using process simulator. International Conference
On Chemical Sciences. pp. 1-5.
Roelofs, J.C.A.A. 2001. Activated
hydrotalcites as solid base catalysts
in Aldol condensations. PhD Thesis.
Utrecht University,
Netherlands (unpublished).
Roelofs, J.C.A.A., Dillen, A.J. & Jong, K.P.
2000. Base-catalyzed condensation of citral and acetone at low temperature using modified hydrotalcite catalysts. Catalysis Today
60: 297-303.
Sastrohamidjojo, H. 1994. Kimia minyak sereh= The
chemistry of citronella oil. Berkala
MIPA (1).
Singh, D., Kumar, T.R., Gupt, V.K. &
Chaturvedi, P. 2012. Antimicrobial activity
of some promising plant oils, molecules and formulations. Indian
Journal of Experimental Biology 50: 714-717.
Ssegawa, P. 2007. Removing barriers to invasive plant management in Africa. Final
report on activity 3,4 of component 3 of
the UNEP/GEF-IAS funded project (NARO). Makerere
University (Kampala).
Wany, A., Jha,
S., Nigam, V.K. & Pandey, D.M. 2013. Chemical analysis and therapeutic
uses of citronella oil from Cymbopogon
winterianus: A short review. International Journal
of Advanced Research 1: 504-521.
Xing, K., You, K., Yin, D., Yuan, Z. & Mao, L. 2009. A simple and effiecient
approach for synthesis of pseudoionone
from citral and acetone catalyzed by powder LiOH.H2O. Catalysis Communications 11:
236-239.
*Corresponding author; email: jalifah@ukm.edu.my
|