Sains Malaysiana 45(5)(2016): 833–839

 

Production and Characterization of the Defatted Oil Palm Shell Nanoparticles

(Penghasilan dan Pencirian Nanopartikel Tempurung Kelapa Sawit Ternyah Lemak)

 

ABDUL KHALIL, H.P.S.1*, MD. SOHRAB HOSSAIN1, NUR AMIRANAJWA, A.S.,1

NURUL FAZITA, M.R.,1 MOHAMAD HAAFIZ, M.K.,1 SURAYA, N.L.M.,1DUNGANI, R.2

& FIZREE, H.M.2

 

1School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia

 

2School of Life Sciences and Technology, Institut Teknologi Bandung, Gedung Labtex XI, Jalan Ganesha 10, Bandung 40132, West Java-Indonesia

 

Received: 3 April 2015/ Accepted: 2 December 2015

 

ABSTRACT

 

This present study was conducted to produce defatted oil palm shell (OPS) nanoparticles. Wherein, the OPS nanoparticles were defatted by solvent extraction method. Several analytical methods including transmission electron microscope (TEM), X-ray diffraction (XRD), particle size analyzer, scanning electron microscope (SEM), SEM energy dispersive X-ray (SEM-EDX) and thermal gravimetric analyzer (TGA) were used to characterize the untreated and defatted OPS nanoparticles. It was found that 75.3% OPS particles were converted into nanoparticles during ball milling. The obtained OPS nanoparticles had smaller surface area with angular, irregular and crushed shapes under SEM view. The defatted OPS nanoparticles did not show any agglomeration during TEM observation. However, the untreated OPS nanoparticles had higher decomposition temperature as compared to the defatted OPS nanoparticles. Based on the characterization results of the OPS nanoparticles, it is evident that the defatted OPS nanoparticles has the potentiality to be used as filler in biocomposites.

 

Keywords: Composite materials; nanofiller; nanoparticles; oil extraction; oil palm shell; solvent extraction

 

ABSTRAK

 

Kajian ini telah dijalankan untuk menghasil dan mencirikan partikel nano tempurung kelapa sawit (OPS) yang telah dinyahlemak. Partikel nano OPS telah dinyahlemak melalui kaedah pengestrakan pelarut. Beberapa kaedah analisis termasuk mikroskop elektron pancaran (TEM), pembelauan sinar-X (XRD), penganalisis saiz partikel, mikroskop elektron imbasan (SEM), SEM sinar-X serakan tenaga (SEM-EDX) dan penganalisis gravimetrik terma (TGA) telah digunakan untuk mencirikan partikel nano OPS yang tidak dirawat dan yang telah dinyahlemak. Didapati bahawa 75.3% daripada partikel OPS telah ditukarkan kepada partikel nano semasa proses pengisaran bola. Partikel nano OPS yang diperoleh menerusi pengimejan SEM mempunyai kawasan permukaan yang lebih kecil dengan bersudut, tidak teratur dan berbentuk hancur. Partikel nano OPS yang dinyahlemak tidak menunjukkan sebarang pengumpulan semasa pemerhatian TEM. Walau bagaimanapun, partikel nano OPS yang tidak dirawat mempunyai suhu penguraian yang lebih tinggi berbanding dengan partikel nano OPS yang dinyahlemak. Berdasarkan keputusan pencirian partikel nano OPS, adalah jelas bahawa partikel nano OPS yang dinyahlemak mempunyai potensi untuk digunakan sebagai pengisi dalam komposit bio.

 

Kata kunci: Bahan komposit; partikel nano; pengekstrakan minyak; pengekstrakan pelarut; pengisi nano; tempurung kelapa sawit

REFERENCES

 

Abdul Khalil, H.P.S., Fizree, H., Jawaid, M. & Alattas, O.S. 2011. Preparation and characterization of nano structured materials from oil palm ash: a bio-agricultural waste from oil palm mill. BioResources 6(4): 4537-4546.

Abdul Khalil, H.P.S., Poh, B.T., Jawaid, M., Ridzuan, R., Suriana, R., Said, M.R., Ahmad, F. & Nik Fuad, N.A. 2010. The effect of soil burial degradation of oil palm trunk fiber-filled recycled polypropylene composites. J. Reinf. Plast. Compos. 29(11): 1653-1663.

Abdullah, S., Yusup, S., Ahmad, M.M., Ramli, A. & Ismail, L. 2010. Thermogravimetry study on pyrolysis of various lignocellulosic biomass for potential hydrogen production. Cellulose 20: 42-20.

Arami-Niya, A., Wan Daud, W.M.A. & Mjalli, F.S. 2010. Using granular activated carbon prepared from oil palm shell by ZnCl2 and physical activation for methane adsorption. J. Anal. Appl. Pyrolysis 89(2): 197-203.

Bi, Y., Luo, R., Li, J., Feng, Z. & Jin, Z. 2008. The effects of the hydraulic oil on mechanical and tribological properties of C/C composites. Mat. Sci. Eng. A 483: 274-276.

Chow, M. & Ho, C. 2002. Chemical composition of oil droplets from palm oil mill sludge. J. Oil Palm Res. 14: 25-34.

Dungani, R., Islam, M.N., Abdul Khalil, H.P.S., Hartati, S., Abdullah, C.K., Dewi, M. & Hadiyane, A. 2013. Termite resistance study of oil palm trunk lumber (OPTL) impregnated with oil palm shell meal and phenol- formaldehyde resin. BioResources 8(4): 4937-4950.

Ferreira-Dias, S., Valente, D.G. & Abreu, J.M. 2003. Comparison between ethanol and hexane for oil extraction from Quercus suber L. fruits. Grasas y Aceites 54(4): 378-383.

Foo, K. & Hameed, B. 2010. Insight into the applications of palm oil mill effluent: a renewable utilization of the industrial agricultural waste. Renew. Sustainable Energy Rev. 14(5): 1445-1452.

Gaur, S. & Reed, T.B. 1998. Thermal Data for Natural and Synthetic Fuels. New York: CRC Press.

Gobi, K. & Vadivelu, V. 2013. By-products of palm oil mill effluent treatment plant-A step towards sustainability. Renew. Sustainable Energy Rev. 28: 788-803.

Hussein, M.Z.B., Abdul Rahman, M.B.B., Yahaya, A.H., Hin, T.-Y.Y. & Ahmad, N. 2001. Oil palm trunk as a raw material for activated carbon production. J. Porous Mat. 8(4): 327-334.

Koo, J.H. 2006. Polymer Nanocomposites: Processing, Characterization, and Applications. New York: McGraw-Hill.

Liauw, M.Y., Natan, F., Widiyanti, P., Ikasari, D., Indraswati, N. & Soetaredjo, F. 2008. Extraction of neem oil (Azadirachta indica A. Juss) using n-hexane and ethanol: studies of oil quality, kinetic and thermodynamic. ARPN J. Eng. Appl. Sci. 3(3): 49-54.

Lua, A.C. & Guo, J. 2001. Microporous oil-palm-shell activated carbon prepared by physical activation for gas-phase adsorption. Langmuir 17(22): 7112-7117.

Md Kawser, J. & Farid Nasir, A. 2000. Oil palm shell as a source of phenol. J. Oil Palm Res. 12: 86-94.

MPOB. 2013. Malaysia: Malaysian Palm Oil Board. Malaysian Palm Oil Industry.

MPOC. 2012. Malaysian Palm Oil Industry. www.mpoc.org.my/Malaysian_Palm_Oil_Industry.aspx.

Ngo, T.T., Lambert, C.A., Bliznyuk, M. & Kohl, J.G. 2013. Effect of a tertiary oil phase on the mechanical properties of natural fiber-reinforced polyester composites. Polym-Plast Technol. 52(11): 1160-1168.

Ogunleye, O. & Eletta, O. 2012. Nonlinear programming for solvent extraction of Jatropha curcas seed oil for biodiesel production. Int. J. Energy Eng. 2(2): 8-14.

Patterson, A.L. 1939. The Scherrer formula for x-ray particle size determination. Phys. Rev. 56(10): 978.

Paul, K., Satphaty, S., Manna, I., Chakraborty, K. & Nando, G. 2007.  Preparation and characterization of nano structured materials from fly ash: a waste from thermal power stations by high energy ball milling. Nano Res. Lett. 2(8): 397-404.

Report-TH. 2013. Palm Oil Production Comparison.

Singh, G., Kim Huan, L., Leng, T. & Kow, D.L. 1999. Oil Palm and the Environment: A Malaysian Perspective. Malaysian Oil Palm Growers' Council.

Wan Daud, W.M.A. & Ali, W.S.W. 2004. Comparison on pore development of activated carbon produced from palm shell and coconut shell. Bioresour. Technol. 93(1): 63-69.

Wan Nik, W., Ani, F.N. & Masjuki, H. 2005. Thermal stability evaluation of palm oil as energy transport media. Energy Conv. Manag. 46(13): 2198-2215.

 

 

*Corresponding author; email: akhalilhps@gmail.com

 

 

previous