Sains Malaysiana 45(5)(2016): 833–839
Production
and Characterization of the Defatted Oil Palm Shell Nanoparticles
(Penghasilan
dan Pencirian Nanopartikel Tempurung Kelapa Sawit Ternyah Lemak)
ABDUL KHALIL, H.P.S.1*, MD. SOHRAB HOSSAIN1, NUR AMIRANAJWA, A.S.,1
NURUL FAZITA, M.R.,1 MOHAMAD HAAFIZ, M.K.,1 SURAYA, N.L.M.,1DUNGANI, R.2
& FIZREE, H.M.2
1School of Industrial
Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia
2School of Life Sciences
and Technology, Institut Teknologi Bandung, Gedung Labtex XI, Jalan Ganesha 10,
Bandung 40132, West Java-Indonesia
Received:
3 April 2015/ Accepted: 2 December 2015
ABSTRACT
This present study was conducted to
produce defatted oil palm shell (OPS) nanoparticles. Wherein,
the OPS nanoparticles were defatted by solvent extraction
method. Several analytical methods including transmission electron microscope (TEM),
X-ray diffraction (XRD), particle size analyzer, scanning
electron microscope (SEM), SEM energy
dispersive X-ray (SEM-EDX) and thermal gravimetric
analyzer (TGA) were used to characterize the untreated and defatted OPS nanoparticles. It was found that 75.3% OPS particles
were converted into nanoparticles during ball milling. The obtained OPS nanoparticles
had smaller surface area with angular, irregular and crushed shapes under SEM view.
The defatted OPS nanoparticles did not show any agglomeration during TEM observation.
However, the untreated OPS nanoparticles had higher
decomposition temperature as compared to the defatted OPS nanoparticles.
Based on the characterization results of the OPS nanoparticles,
it is evident that the defatted OPS nanoparticles has the
potentiality to be used as filler in biocomposites.
Keywords: Composite materials;
nanofiller; nanoparticles; oil extraction; oil palm shell; solvent extraction
ABSTRAK
Kajian ini
telah dijalankan untuk menghasil dan mencirikan partikel nano tempurung kelapa
sawit (OPS) yang telah dinyahlemak. Partikel nano OPS telah dinyahlemak melalui kaedah
pengestrakan pelarut. Beberapa kaedah analisis termasuk mikroskop
elektron pancaran (TEM), pembelauan sinar-X (XRD),
penganalisis saiz partikel, mikroskop elektron imbasan (SEM), SEM sinar-X serakan tenaga (SEM-EDX) dan penganalisis
gravimetrik terma (TGA) telah digunakan untuk mencirikan
partikel nano OPS yang tidak dirawat dan yang telah dinyahlemak.
Didapati bahawa 75.3% daripada partikel OPS telah ditukarkan kepada
partikel nano semasa proses pengisaran bola. Partikel nano OPS yang
diperoleh menerusi pengimejan SEM mempunyai kawasan permukaan
yang lebih kecil dengan bersudut, tidak teratur dan berbentuk hancur. Partikel nano OPS yang dinyahlemak tidak menunjukkan
sebarang pengumpulan semasa pemerhatian TEM. Walau
bagaimanapun, partikel nano OPS yang tidak dirawat mempunyai
suhu penguraian yang lebih tinggi berbanding dengan partikel nano OPS yang
dinyahlemak. Berdasarkan keputusan pencirian partikel
nano OPS, adalah jelas bahawa partikel nano OPS yang
dinyahlemak mempunyai potensi untuk digunakan sebagai pengisi dalam komposit
bio.
Kata kunci: Bahan komposit; partikel nano; pengekstrakan minyak;
pengekstrakan pelarut; pengisi nano; tempurung kelapa sawit
REFERENCES
Abdul Khalil, H.P.S., Fizree, H., Jawaid, M. & Alattas, O.S.
2011. Preparation and characterization of nano structured materials
from oil palm ash: a bio-agricultural waste from oil palm mill. BioResources 6(4): 4537-4546.
Abdul
Khalil, H.P.S., Poh, B.T., Jawaid, M., Ridzuan, R., Suriana, R., Said, M.R.,
Ahmad, F. & Nik Fuad, N.A. 2010. The effect of soil burial degradation of
oil palm trunk fiber-filled recycled polypropylene composites. J. Reinf.
Plast. Compos. 29(11): 1653-1663.
Abdullah, S., Yusup, S., Ahmad, M.M., Ramli, A. & Ismail, L.
2010. Thermogravimetry study on pyrolysis of various lignocellulosic biomass for potential hydrogen production. Cellulose 20:
42-20.
Arami-Niya, A., Wan Daud, W.M.A. & Mjalli, F.S. 2010. Using granular activated
carbon prepared from oil palm shell by ZnCl2 and
physical activation for methane adsorption. J. Anal. Appl. Pyrolysis 89(2):
197-203.
Bi, Y., Luo, R., Li, J., Feng,
Z. & Jin, Z. 2008. The effects of the
hydraulic oil on mechanical and tribological properties of C/C composites. Mat. Sci. Eng. A 483: 274-276.
Chow, M. & Ho, C.
2002. Chemical composition of oil droplets from palm oil mill
sludge. J. Oil Palm Res. 14: 25-34.
Dungani, R., Islam,
M.N., Abdul Khalil, H.P.S., Hartati, S., Abdullah, C.K., Dewi, M. &
Hadiyane, A. 2013. Termite resistance study of oil palm trunk lumber (OPTL) impregnated
with oil palm shell meal and phenol- formaldehyde resin. BioResources 8(4):
4937-4950.
Ferreira-Dias, S.,
Valente, D.G. & Abreu, J.M. 2003. Comparison between
ethanol and hexane for oil extraction from Quercus
suber L. fruits. Grasas y Aceites 54(4): 378-383.
Foo, K. & Hameed, B.
2010. Insight into the applications of palm oil mill effluent: a renewable
utilization of the industrial agricultural waste. Renew. Sustainable Energy
Rev. 14(5): 1445-1452.
Gaur,
S. & Reed, T.B. 1998. Thermal Data for Natural and Synthetic Fuels. New York: CRC Press.
Gobi, K. & Vadivelu,
V. 2013. By-products of palm oil mill effluent treatment plant-A step towards
sustainability. Renew. Sustainable Energy Rev. 28: 788-803.
Hussein, M.Z.B., Abdul
Rahman, M.B.B., Yahaya, A.H., Hin, T.-Y.Y. &
Ahmad, N. 2001. Oil palm trunk as a raw material for
activated carbon production. J. Porous Mat. 8(4): 327-334.
Koo, J.H. 2006. Polymer Nanocomposites: Processing, Characterization,
and Applications. New York: McGraw-Hill.
Liauw,
M.Y., Natan, F., Widiyanti, P., Ikasari, D., Indraswati, N. & Soetaredjo,
F. 2008. Extraction of neem oil (Azadirachta
indica A. Juss) using n-hexane and ethanol: studies of oil quality, kinetic
and thermodynamic. ARPN J. Eng. Appl. Sci. 3(3): 49-54.
Lua, A.C. & Guo, J.
2001. Microporous oil-palm-shell activated carbon prepared by
physical activation for gas-phase adsorption. Langmuir 17(22):
7112-7117.
Md
Kawser, J. & Farid Nasir, A. 2000. Oil palm shell as a
source of phenol. J. Oil Palm Res. 12: 86-94.
MPOB. 2013. Malaysia: Malaysian Palm Oil Board. Malaysian Palm Oil Industry.
MPOC. 2012. Malaysian Palm Oil Industry. www.mpoc.org.my/Malaysian_Palm_Oil_Industry.aspx.
Ngo, T.T., Lambert,
C.A., Bliznyuk, M. & Kohl, J.G. 2013. Effect of a
tertiary oil phase on the mechanical properties of natural fiber-reinforced
polyester composites. Polym-Plast Technol. 52(11): 1160-1168.
Ogunleye, O. &
Eletta, O. 2012. Nonlinear programming for solvent extraction
of Jatropha curcas seed oil for biodiesel
production. Int. J. Energy Eng. 2(2): 8-14.
Patterson, A.L. 1939. The Scherrer formula for x-ray particle size determination. Phys.
Rev. 56(10): 978.
Paul,
K., Satphaty, S., Manna, I., Chakraborty, K. & Nando, G. 2007. Preparation and characterization of nano
structured materials from fly ash: a waste from thermal power stations by high
energy ball milling. Nano Res. Lett. 2(8): 397-404.
Report-TH. 2013. Palm
Oil Production Comparison.
Singh,
G., Kim Huan, L., Leng, T. & Kow, D.L. 1999. Oil Palm and the Environment: A Malaysian Perspective. Malaysian Oil Palm Growers' Council.
Wan Daud, W.M.A. &
Ali, W.S.W. 2004. Comparison on pore development of activated carbon produced
from palm shell and coconut shell. Bioresour. Technol. 93(1): 63-69.
Wan Nik, W., Ani, F.N.
& Masjuki, H. 2005. Thermal stability evaluation of palm oil as energy
transport media. Energy Conv. Manag. 46(13): 2198-2215.
*Corresponding author; email: akhalilhps@gmail.com
|