Sains Malaysiana 46(12)(2017): 2375–2381
http://dx.doi.org/10.17576/jsm-2017-4612-14
Do Aquatic Macrophytes Configuration Mode Impact Water Quality?
(Adakah
Mod Konfigurasi Akua
Makrofit Mengesan Kualiti
Air?)
HUI-HUI
WANG,
JING-LAN
LIU,
RONG
ZHANG,
JIA-KAI
LIU,
YU-QI
ZOU
& ZHEN-MING
ZHANG*
College of Nature
Conservation, Beijing Forestry University, Beijing 100083, China
Received: 3 March 2014/Accepted:
25 April 2017
ABSTRACT
This paper had selected watermifoil (Myriophyllum veticillatum Linn.), softstem bulrush (Scirpus validus Vahl) and yellow-flowered iris (Iris wilsonii), in showing the water purification through
different configuration. AFIs with different combination of aquatic
plants were set up to purify the water quality for 50 days. This paper aimed to
evaluate chemical and vegetative characteristics of each type of plant and also
to find configuration of aquatic plants to maximize the contaminants removal
efficiency by artificial floating island (AFI).
The result indicated that the trophic waterbody promote the growth of plants
and all of the AFIs have the ability to purify water
and reduce contaminants. However, the most effective way is by combination of
these three aquatic plants which has strong capacity to remove COD,
NO3-, total nitrogen, total phosphorous and improve pH levels. Watermifoil (Myriophyllum verticillatum Linn.)
is better than yellow-flowered iris (Iris wilsonii)
and softstem bulrush (Scirpus validus Vahl) in
disposing water pollutants.
Keywords: Aquatic plants;
configuration; water purification
ABSTRAK
Kertas ini telah
memilih tumbuhan watermifoil (Myriophyllum veticillatum Linn.), softstem
bulrush (Scirpus validus
Vahl) dan
yellow-flowered iris (Iris wilsonii)
yang menulenkan air melalui konfigurasi berbeza. AFI dengan kombinasi
berbeza tumbuhan
akuatik disediakan bagi menulenkan air selama 50 hari. Kajian ini
bertujuan menilai
ciri kimia dan
vegetatif setiap
tumbuhan yang dikaji di samping mencari konfigurasi tumbuhan akuatik bagi memaksimumkan
kecekapan penyingkiran
bahan cemar melalui
pulau terapung
buatan (AFI). Keputusan
kajian menunjukkan jasad air trofik menggalakkan pertumbuhan tumbuhan dan semua
kombinasi AFI berupaya
untuk menulenkan
air dan mengurangkan bahan cemar. Kombinasi yang paling berkesan
adalah kombinasi ketiga-tiga tumbuhan kerana mempunyai kapasiti yang tinggi untuk menyingkirkan COD,
NO3-, jumlah nitrogen, jumlah fosforus dan memperbaiki aras pH.
Watermifoil (Myriophyllum verticillatum Linn.)
adalah lebih
baik berbanding yellow-flowered
iris (Iris wilsonii)
untuk digabungkan dengan softstem bulrush (Scirpus validusVahl) dalam menyingkirkan
bahan cemar.
Kata kunci: Konfigurasi; penulenan air; tumbuhan akuatik
REFERENCES
Arts,
G.H. 2002. Deterioration of atlantic soft water macrophyte communities by acidification,
eutrophication and alkalinisation. Aquatic Botany 73(4):
373-393.
Bornette, G. & Puijalon, S. 2011. Response of aquatic plants to abiotic
factors: A review. Aquatic Sciences 73(1): 1-14.
Boyd, C.E. 1970.
Production, mineral accumulation and pigment concentrations in Typha latifoliaand Scirpus americanus. Ecology 51(2): 285-290.
De
Stefani, G., Tocchetto, D., Salvat,
M. & Borin, M. 2011. Performance of a floating treatment wetland for in-stream water
amelioration in NE Italy. Hydrobiologia 674(1): 157-167.
Denny,
P. 1980. Solute movement in submerged angiosperms. Biological
Reviews: 55: 65-92.
Dunabin,
J.S. & Bowmer, K.H. 1992. Potential use of constructed wetlands for treatment of industrial
wastewaters containing metals. Science of the Total Environment 111(2-3):
151-168.
Elankumaran,
R., Raj, M.B. & Madhyastha, M.N. 2003. Biosorption of
copper from contaminated water by Hydrilla verticillataCasp. and Salvinia sp.
Green Pages: Environmental News Sources.
Gersberg,
R.M., Elkin, B.V., Lyon, S.R. & Goldman, C.R. 1986. Role of aquatic plants in wastewater treatment by artificial
wetlands. Water Research 20(3): 363-368.
Hu,
M.H., Yuan, J.H., Yang, X.E. & He, Z.L. 2010. Effects of temperature on purification of eutrophic water by
floating eco-island system. Acta Ecologica Sinica30(6):
310-318.
Hunter,
R.G., Combs, D.L. & George, D.B. 2001. Nitrogen, phosphorous, and organic carbon removal in simulated wetland treatment systems. Archives
of Environmental Contamination and Toxicology 41(3): 274-281.
James,
W.F., Barko, J.W. & Eakin,
H.L. 2004. Impacts of sediment dewatering and rehydration on sediment
nitrogen concentration and macrophyte growth. Canadian
Journal of Fisheries and Aquatic Sciences 61(4): 538-546.
Jeppesen,
E., Sondergaard, M. & Christofferson,
K. 1997. The structuring role of submerged macrophytes in lakes. Ecological Studies 131: 427-441.
Juwarkar,
A.S., Oke, B., Juwarkar, A.
& Patnaik, S.M. 1995. Domestic wastewater
treatment through constructed wetland in India. Water Science and
Technology 32(3): 291-294.
Khan,
F.A. & Ansari, A.A. 2005. Eutrophication: An ecological vision. The
Botanical Review 71(4): 449-482.
Lacoul,
P. & Freedman, B. 2006. Relationships between
aquatic plants and environmental factors along a steep Himalayan altitudinal
gradient. Aquatic Botany 84(1): 3-16.
Madsen,
T.V. & Cedergreen, N. 2002. Sources of
nutrients to rooted submerged macrophytes growing in
a nutrient-rich stream. Freshwater Biology 47(2): 283-291.
Murphy, K. 2002.
Plant communities and plant diversity in softwater lakes of northern Europe. Aquatic Botany 73(4): 287-324.
Nakai,
S., Zou, G., Okuda, T., Tsai, T.Y. & Song, X. 2010. Anti-cyanobacterial allelopathic effects
of plants used for artificial floating islands. Allelopathy Journal 26(1):
113-121.
Nakamura,
K. & Mueller, G. 2008. Review of the performance of the
artificial floating island as a restoration tool for aquatic environments. World Environmental and Water Resources Congress.
Okia,
O. 1993. Characterization of wastewater purification by Cyperus papyrus floating in segmented channel. Thesis, IHE Delft
Institute for Water Education. Netherland (Unpublished).
Smolders,
A.J.P., Lucassen, E. & Roelofs, J.G.M. 2002. The isoetid environment: Biogeochemistry and threats. Aquatic Botany 73(4): 325-350.
Stewart,
F.M., Mulholland, T., Cunningham, A.B., Kania, B.G.
& Osterlund, M.T. 2008. Floating
islands as an alternative to constructed wetlands for treatment of excess
nutrients from agricultural and municipal wastes-results of laboratory-scale
tests. Land Contamination and Reclamation 16: 25.
Yao,
K.K., Song, S.M., Zhang, Z.M., Xu, J., Zhang, R., Liu, J.K., Cheng, L.X. &
Liu, J.L. 2011. Vegetation characteristics and water purification by
artificial floating island. African Journal of Biotechnology 10:
19119-19125.
Zhao, F., Xi,
S., Yang, X., Li, J., Gu, B.
& He, Z. 2012. Purifying eutrophic river waters with
integrated floating island systems. Ecological Engineering 40:
53-60.
Zhu,
L., Li, Z. & Ketola, T. 2011. Biomass
accumulations and nutrient uptake of plants cultivated on artificial floating
beds in China’s rural area. Ecological Engineering 37: 1460-1466.
*Corresponding author; email: zhenmingzhang@bjfu.edu.cn
|