Sains Malaysiana 46(12)(2017): 2497–2506
http://dx.doi.org/10.17576/jsm-2017-4612-27
Characterization of Aerobic Granular Sludge
Developed under Variable and Low Organic Loading Rate
(Pencirian Enap Cemar Berbutir
Aerobik Dibangunkan
di bawah Pemboleh Ubah dan Kadar Pemuatan Organik Rendah)
NIK AZIMATOLAKMA
AWANG1,
MD
GHAZALY
SHAABAN1*,
LEE
CHOON
WENG2
& BONG
CHUI
WEI2
1Department of Civil
Engineering, Faculty of Engineering, University of Malaya, 50603
Kuala Lumpur, Federal Territory, Malaysia
2Institute of Biological
Sciences, Faculty of Science, University of Malaya, 50603 Kuala
Lumpur, Federal Territory, Malaysia
Received: 14 January
2017/Accepted: 14 May 2017
ABSTRACT
Understanding the formation
of aerobic granules sludge (AGS) under the variations of organic
loading rate (OLR) could give a different insight on
AGS
stability, which had become the bottleneck for
practical application in sewage treatment. This study demonstrates
the formation of AGS
that had previously been stored for eight months
at 5ºC in sequencing batch reactor (SBR)
with sewage as substrate. Despite being redeveloped under variable
OLR
of 0.26 to 0.81 kg CODs/m3 d
and low superficial air velocity (SAV) of 1.33 cm/s, the loose structure
of AGS during storage can be recovered within 46 days of formation
process. Variations in OLR intrude the formation process
particularly during low OLR, resulting in longer period
to achieve mature AGS or full granulation of biomass in
reactor. The next-generation sequencing (NGS) analysis indicated that the
shift in microbial community from Rhodocyclaceae
to Comamonadaceae class for denitrification
process was accommodated with the changes in the AGS size from 326 μm to more than 600 μm.
Keywords: Aerobic granular
sludge; next generation sequencing; sewage; stability
ABSTRAK
Memahami pembentukan enap cemar berbutir aerobik (AGS) di bawah
variasi kadar
pembebanan organik
(OLR)
boleh memberikan
pandangan yang berbeza pada kestabilan AGS,
yang menjadi masalah
utama untuk aplikasi
praktik dalam
rawatan kumbahan. Kajian ini menunjukkan
pembentukan semula
AGS
yang sebelum ini
telah disimpan selama 8 bulan pada 5ºC, dalam reaktor penjujukan berkumpulan (SBR) dengan
kumbahan sebagai
substrat. Walaupun dibangunkan semula di bawah pemboleh ubah OLR daripada
0.26 kepada 0.81 CODs
kg/m3 d dan
halaju udara
cetek rendah (SAV)
1.33 cm/s, struktur longgar
AGS
semasa penyimpanan
dapat dipulihkan
dalam tempoh 46 hari daripada proses pembentukan semula. Variasi dalam OLR mengganggu
proses pembentukan terutamanya
semasa OLR rendah
dan menyebabkan
tempoh yang lebih lama untuk mencapai AGS matang atau pembutiran
penuh biojisim
dalam reaktor. Analisis penjujukan generasi akan
datang (NGS) menunjukkan
pertukaran komuniti
mikrob daripada kelas Rhodocyclaceae kepada Comamonadaceae untuk proses denitrifikasi adalah disebabkan oleh perubahan dalam saiz AGS daripada 326 μm kepada lebih 600 μm.
Kata kunci:
Enap cemar
berbutir aerobik; kestabilan; kumbahan; penjujukan generasi akan datang
REFERENCES
Adav, S.S., Lee, D.J. &
Lai, J.Y. 2009. Aerobic granulation
in sequencing batch reactors at different settling times.
Bioresour.
Technol. 100(21): 5359-5361.
APHA, 2005. Standard Methods for the Examination
of Water and Wastewater, 21st ed. Washington: American Public
Health Association/American Water Works Association/ Water Environment
Federation.
Aqeel, H.,
Basuvaraj, M., Hall, M., Neufeld,
J.D. & Lis, S.N. 2016. Microbial dynamics and properties of aerobic granules developed
in a loboratory-scale sequencing batch
reactor with an intermediate filamentous bulking stage. Appl.
Microbiol. Biotechnol.
100: 447-460.
Awang, N.A.
& Shaaban, M.G. 2015. The impact of reactor height/diameter (H/D) ratio on aerobic granular
sludge (AGS) formation in sewage. Jurnal
Teknologi (Sciences & Engineering)
77(32): 95-103.
Awang, N.A.
& Shaaban, M.G. 2016. Effect of reactor height/ diameter ratio and organic loading rate
on formation of aerobic granular sludge in sewage treatment.
Int. Biodeterior. Biodegrad. 112: 1-11.
Corsino, S.F.,
Di Biase, A., Devlin, T.R., Munz,
G., Torregrossa, M. & Oleszkiewicz,
J.A. 2017. Effect of extended famine conditions on aerobic
granular sludge stability in the treatment of brewery wastewater.
Bioresour.
Technol. 226: 150-157.
Lemaire, R.,
Webb, R.I. & Yuan, Z. 2008. Micro-scale
observations of the structure of aerobic microbial granules
used for the treatment of nutrient-rich industrial wastewater.
Int. Society Microb.
Ecology J. 2(5): 528-541.
Li, J., Ma, L., Wei, S. & Horn, H. 2013. Aerobic
granules dwelling vorticella and rotifers in an SBR fed with
domestic wastewater. Sep. Purif.
Technol. 110: 127-131.
Li,
Y., Wang, Z. & Liu, Y. 2008. Diffusion of Substrate
and oxygen in aerobic granules. In Wastewater Purification:
Aerobic
Granulation in Sequencing
Batch Reactors. 1st
ed., edited by Liu, Y. Boca Raton: Taylor & Francis Group.
pp. 131-147.
Long,
B., Yang, C.Z., Pu, W.H., Yang, J.K., Liu, F.B., Zhang, L.,
Zhang, J. & Cheng, K. 2015.
Tolerance to organic loading rate by aerobic
granular sludge in a cyclic aerobic granular reactor.
Bioresour.
Technol. 182: 314-322.
Lv, Y., Wan, C.,
Liu, X., Zhang, Y., Lee, D.J. & Tay,
J.H. 2013. Drying and re-cultivation of aerobic granules. Bioresour.
Technol. 129: 700-703.
Morales, N., Figueroa,
M., Fra-Vázquez, A., Val del Río, A.,
Campos, J.L., Mosquera-Corral, A.
& Méndez, R. 2013. Operation of an aerobic granular pilot
scale SBR plant to treat swine slurry. Process Biochem
48(8): 1216-1221.
Moy,
B.Y.P., Tay, J.H., Toh,
S.K., Liu, Y. & Tay, S.T.L. 2002. High organic loading
influences the physical characteristics of aerobic sludge granules.
Lett. Appl. Microbiol.
34: 407-412.
Ni,
B.J., Xie, W.M., Liu, S.G., Yu, H.Q.,
Wang, Y.Z., Wang, G. & Dai, X.L. 2009. Granulation of activated
sludge in a pilot-scale sequencing batch reactor for the treatment
of low-strength municipal wastewater. Water Res. 43(3):
751-761.
Peyong,
Y.N., Zhou, Y., Abdullah, A.Z. & Vadivelu,
V. 2012.
The effect of organic loading rates and nitrogenous compounds
on the aerobic granules developed using low strength wastewater.
Biochem. Eng.
J. 67: 52-59.
Pronk,
M., de Kreuk, M.K., de Bruin, B.,
Kamminga, P., Kleerebezem,
R. & van Loosdrecht, M.C.M. 2015.
Full scale performance of the aerobic granular
sludge process for sewage treatment. Water Res. 84:
207-217.
Rosenberg, E.,
Delong, E.F., Lary, S., Stackebrandt,
E. & Thompson, F. 2014. The Prokaryotes: Other Major
Lineages of Bacteria and the Archea.
4th ed. Berlin Heidelberg: Springer-Verlag.
Su,
B., Cui, X. & Zhu, J. 2012. Optimal cultivation and characteristics
of aerobic granules with typical domestic sewage in an alternating
anaerobic/aerobic sequencing batch reactor. Bioresour.
Technol. 110: 125-129.
Tay, J.H., Ivanov,
V., Pan, S. & Tay, S.T.L. 2002.
Specific layers in aerobically grown microbial granules. Lett. Appl. Microbiol.
34: 254-257.
Weber, S.D., Ludwig,
W., Schleifer, K.H. & Fried, J.
2007. Microbial composition and structure of aerobic granular sewage biofilms.
Appl. Environ. Microbiol. 73(19): 6233- 6240.
Zhou, D., Niu, S., Xiong, Y., Yang, Y. &
Dong, S. 2014. Microbial selection pressure is not a prerequisite
for granulation: Dynamic granulation and microbial community
study in a complete mixing bioreactor. Bioresour. Technol. 161: 102- 108.
*Corresponding author; email: ghazaly@um.edu.my