Sains Malaysiana 46(1)(2017): 97–106

http://dx.doi.org/10.17576/jsm-2017-4601-13

 

Compressibility Characteristics of Compacted Clay Treated withCement,

Peat Ash and Silica Sand

(Ciri Kebolehmampatan Tanah Liat Terpadat Dirawat dengan Simen, Abu Gambut dan Pasir Silika)

 

SEYEDESMAEIL MOUSAVI* & LEONG SING WONG

 

Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional, IKRAM-UNITEN Road, 43000 Kajang, Selangor Darul Ehsan, Malaysia

 

Received: 7 August 2015/Accepted: 22 April 2016

 

 

ABSTRACT

This paper investigates the compressibility characteristics of compacted clay treated with cement, peat ash and silica sand. For this purpose, one dimensional consolidation tests were conducted to determine the soil consolidation properties. The test specimens were trimmed from the compaction test specimen. The 1D consolidation test specimen was subjected to the normal pressures of 2.5, 5, 10, 20, 40, 80 and 160 kPa in sequence on the test specimen which was saturated with distilled water. At the end of the loading period of 80 kPa, the vertical load was removed and the specimen was allowed to expand for 24 h for the purpose of evaluating of its swelling behavior. The results showed that void ratio of the soil specimens decreased with increasing effective normal pressure. The laboratory investigation clearly demonstrates that, settlement is as the compression of a soil specimen due to vertical loading applied at the top surface of the 1D consolidation test specimen. It was concluded that, the compression settlement of the stabilized soil with the binder composition of 18% cement, 2% peat ash and 5% silica sand improved by almost 1.3-fold. A notable discovery is the suitability of the stabilized soil for road embankment and low lying marginal area for foundation works; also solving the environmental problems in relation to peaty ground. However, sufficient laboratory and field testing are required.

 

Keywords: Compressibility; road embankment; soft clay; 1D consolidation

 

ABSTRAK

Kertas ini mengkaji ciri kebolehmampatan tanah liat terpadat yang dirawat dengan simen, abu gambut dan pasir silika. Bagi tujuan ini, satu ujian penyatuan dimensi telah dijalankan untuk menentukan sifat konsolidasi tanah. Spesimen ujian telah dipotong daripada spesimen ujian pemadatan. Spesimen ujian konsolidasi 1D adalah tertakluk kepada tekanan normal 2.5, 5, 10, 20, 40, 80 dan 160 kPa dalam turutan ujian spesimen yang telah ditepu dengan air suling. Pada akhir tempoh pemuatan 80 kPa, beban menegak telah dihapuskan dan spesimen itu dibiarkan untuk berkembang selama 24 jam bagi tujuan menilai tingkah laku pembengkakan. Hasil kajian menunjukkan bahawa nisbah batal bagi spesimen tanah menurun dengan peningkatan tekanan normal yang berkesan. Kajian makmal dengan jelas menunjukkan bahawa penyelesaian adalah seperti pemampatan spesimen tanah yang disebabkan oleh beban menegak yang diguna pakai di atas permukaan spesimen ujian pengukuhan 1D. Ia menunjukkan bahawa penyelesaian mampatan tanah stabil dengan komposisi pengikat 18% simen, 2% abu gambut dan 5% pasir silika meningkat sebanyak hampir 1.3-lipatan. Satu penemuan yang ketara ialah kesesuaian tanah stabil bagi tambak jalan dan kawasan marginal rendah untuk kerja-kerja asas; juga menyelesaikan masalah alam sekitar berkaitan tanah gambut. Walau bagaimanapun, ujian makmal dan lapangan adalah perlu.

 

Kata kunci: Kebolehmampatan; konsolidasi 1D; tambak jalan; tanah liat lembut

 

REFERENCES

Abou-Taleb, A.N., Musaiger, A.O. & Abdelmoneim, R.B. 1995. Health status of cement workers in the United Arab Emirates. J. R. Soc. Health 115: 378-381.

ASTM D2974-14. 2014. Standard Test Methods for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils. West Conshohocken, PA: ASTM International.

ASTM D2435-04. 2011. Standard Test Methods for One- Dimensional Consolidation Properties of Soils Using Incremental Loading. West Conshohocken, PA: ASTM International.

Bujang, B.K.H., Kazemian, S., Prasad, A. & Barghchi, M. 2011. State of an art review of peat: General perspective. International Journal of the Physical Sciences 6: 1988-1996.

Baghdadi, Z.A. 1990. Utilization of kiln dust in clay stabilization. Eng. Sci., Jeddah, Scientific Publication Center, King Abdul Aziz University 2: 153-163.

Collins, R.J. & Emery, J.J. 1983. Kiln Dust-Fly Ash System for Highway Bases and Subbases. Federal Highway Administration Report FHWA/RD-82/167. US Department of Transportation, Washington, DC.

Eberemu, A.O. 2015. Compressibility characteristics of compacted lateritic soil treated with bagasse ash. Jordan Journal of Civil Engineering 9: 214-228.

Horpibulsuk, S., Rachan, R. & Suddeepong, A. 2011. Assessment of strength development in blended cement admixed Bangkok clay. Construction and Building Materials 25: 1521-1531.

Huat, B.B.K., Othman, K. & Jaffar, A.A. 1995. Geotechnical properties of Malaysian marine clays. J. Inst. Engineers Malaysia 56: 23-33.

Isaia, G.C., Gastaldini, A.L.G. & Moraes, R. 2003. Physical and pozzolanic action of mineral additions on the mechanical strength of high-performance concrete. Cement and Concrete Composites 25: 69-76.

Mousavi, S.E. & Wong, L.S. 2015. Performance of compacted and stabilized clay with cement, peat ash and silica sand. Jordan Journal of Civil Engineering 9: 20-32.

Maio Di, C., Santoli, L. & Schiavone, P. 2004. Volume change behaviour of clays: The influence of mineral composition, pore fluid composition and stress state. Mechanics of Materials 36: 435-451.

Nishida, Y. 1956. A brief note on compression index of soils. Journal of Soil Mechanics and Foundations Division, ASCE, 82, SM3, 1027-1-1027-14.

Purwana, Y.M. & Nikraz, H. 2013. The correlation between the CBR and shear strength in unsaturated soil conditions. International Journal of Transportation Engineering 1: 211-222.

Rehan, R. & Nehdi, M. 2005. Carbon dioxide emissions and climate change: Policy implications for the cement industry. Environmental Science and Policy 8: 105-114.

Schiffman, R.L., Pane, V. & Gibson, R.E. 1984. The theory of one-dimensional consolidation of saturated clays: IV-An overview of the non-linear finite strain sedimentation and consolidation. ASCE 1-29.

Taha, M.R., Ahmed, J. & Asmirza, S. 2000. One dimensional consolidation of Kelang clay. Pertanika Journal of Science and Technology 8: 19-29.

Terzaghi, K. & Peck, R.B. 1967. Soil Mechanics in Engineering Practice. 2nd ed. New York: John Wiley and Sons.

Terzaghi, K. 1943. Theoretical Soil Mechanics. New York: John Wiley & Sons, Inc. p. 265.

Velosa, A.L. & Cachim, P.B. 2009. Hydraulic-lime based concrete: Strength development using a pozzolanic addition and different curing conditions. Construction and Building Materials 23: 2107-2111.

Wong, L.S., Hashim, R. & Ali, F. 2013. Improved strength and reduced permeability of stabilized peat: Focus on application of kaolin as a pozzolanic additive. Construction and Building Materials 40: 783-792.

Yilmaz, Y. & Ozaydin, V. 2013. Compaction and shear strength characteristics of colemanite ore waste modified active belite cement stabilized high plasticity soil. Engineering Geology 155: 45-53.

 

 

*Corresponding author; email: mousavi@khiau.ac.ir

 

 

 

previous