Sains Malaysiana 46(1)(2017): 97–106
http://dx.doi.org/10.17576/jsm-2017-4601-13
Compressibility Characteristics of Compacted
Clay Treated withCement,
Peat Ash and Silica Sand
(Ciri Kebolehmampatan Tanah Liat Terpadat
Dirawat dengan Simen, Abu Gambut dan Pasir Silika)
SEYEDESMAEIL MOUSAVI*
& LEONG SING WONG
Department of Civil
Engineering, College of Engineering, Universiti Tenaga Nasional, IKRAM-UNITEN Road, 43000 Kajang, Selangor Darul Ehsan, Malaysia
Received: 7 August 2015/Accepted:
22 April 2016
ABSTRACT
This paper investigates the
compressibility characteristics of compacted clay treated with cement, peat ash
and silica sand. For this purpose, one dimensional consolidation tests were
conducted to determine the soil consolidation properties. The test specimens
were trimmed from the compaction test specimen. The 1D consolidation test
specimen was subjected to the normal pressures of 2.5, 5, 10, 20, 40, 80 and
160 kPa in sequence on the test specimen which was saturated with distilled
water. At the end of the loading period of 80 kPa, the vertical load was
removed and the specimen was allowed to expand for 24 h for the purpose of
evaluating of its swelling behavior. The results showed that void ratio of the
soil specimens decreased with increasing effective normal pressure. The
laboratory investigation clearly demonstrates that, settlement is as the
compression of a soil specimen due to vertical loading applied at the top
surface of the 1D consolidation test specimen. It was concluded that, the
compression settlement of the stabilized soil with the binder composition of
18% cement, 2% peat ash and 5% silica sand improved by almost 1.3-fold. A
notable discovery is the suitability of the stabilized soil for road embankment
and low lying marginal area for foundation works; also solving the
environmental problems in relation to peaty ground. However, sufficient
laboratory and field testing are required.
Keywords: Compressibility; road
embankment; soft clay; 1D consolidation
ABSTRAK
Kertas ini
mengkaji ciri kebolehmampatan tanah liat terpadat yang dirawat dengan simen,
abu gambut dan pasir silika. Bagi tujuan ini,
satu ujian penyatuan dimensi telah dijalankan untuk menentukan sifat
konsolidasi tanah. Spesimen ujian telah dipotong
daripada spesimen ujian pemadatan. Spesimen ujian konsolidasi 1D adalah
tertakluk kepada tekanan normal 2.5, 5, 10, 20, 40, 80 dan 160 kPa dalam
turutan ujian spesimen yang telah ditepu dengan air suling. Pada akhir tempoh
pemuatan 80 kPa, beban menegak telah dihapuskan dan spesimen itu dibiarkan
untuk berkembang selama 24 jam bagi tujuan menilai tingkah laku pembengkakan.
Hasil kajian menunjukkan bahawa nisbah batal bagi spesimen tanah menurun dengan
peningkatan tekanan normal yang berkesan. Kajian makmal dengan jelas
menunjukkan bahawa penyelesaian adalah seperti pemampatan spesimen tanah yang
disebabkan oleh beban menegak yang diguna pakai di atas permukaan spesimen
ujian pengukuhan 1D. Ia menunjukkan bahawa penyelesaian mampatan tanah stabil
dengan komposisi pengikat 18% simen, 2% abu gambut dan 5% pasir silika
meningkat sebanyak hampir 1.3-lipatan. Satu penemuan yang ketara ialah
kesesuaian tanah stabil bagi tambak jalan dan kawasan marginal rendah untuk
kerja-kerja asas; juga menyelesaikan masalah alam sekitar berkaitan tanah
gambut. Walau bagaimanapun, ujian makmal dan lapangan adalah perlu.
Kata
kunci: Kebolehmampatan; konsolidasi 1D; tambak jalan; tanah liat lembut
REFERENCES
Abou-Taleb, A.N.,
Musaiger, A.O. & Abdelmoneim, R.B. 1995. Health status of cement workers in
the United Arab Emirates. J. R. Soc. Health 115: 378-381.
ASTM D2974-14. 2014. Standard
Test Methods for Moisture, Ash, and Organic Matter of Peat and Other Organic
Soils. West Conshohocken, PA: ASTM International.
ASTM D2435-04. 2011. Standard
Test Methods for One- Dimensional Consolidation Properties of Soils Using
Incremental Loading. West Conshohocken, PA: ASTM International.
Bujang, B.K.H.,
Kazemian, S., Prasad, A. & Barghchi, M. 2011. State of an art review of
peat: General perspective. International Journal of the Physical Sciences 6:
1988-1996.
Baghdadi, Z.A. 1990.
Utilization of kiln dust in clay stabilization. Eng. Sci., Jeddah,
Scientific Publication Center, King Abdul Aziz University 2: 153-163.
Collins, R.J. &
Emery, J.J. 1983. Kiln Dust-Fly Ash System for Highway Bases and Subbases. Federal
Highway Administration Report FHWA/RD-82/167. US Department of Transportation,
Washington, DC.
Eberemu, A.O. 2015. Compressibility
characteristics of compacted lateritic soil treated with bagasse ash. Jordan
Journal of Civil Engineering 9: 214-228.
Horpibulsuk, S., Rachan,
R. & Suddeepong, A. 2011. Assessment of strength development in blended
cement admixed Bangkok clay. Construction and Building Materials 25:
1521-1531.
Huat, B.B.K., Othman, K.
& Jaffar, A.A. 1995. Geotechnical properties of Malaysian marine clays.
J. Inst. Engineers Malaysia 56: 23-33.
Isaia, G.C., Gastaldini,
A.L.G. & Moraes, R. 2003. Physical and pozzolanic action of mineral
additions on the mechanical strength of high-performance concrete. Cement
and Concrete Composites 25: 69-76.
Mousavi, S.E. &
Wong, L.S. 2015. Performance of compacted and stabilized clay with cement, peat
ash and silica sand. Jordan Journal of Civil Engineering 9: 20-32.
Maio Di, C., Santoli, L.
& Schiavone, P. 2004. Volume change behaviour of clays: The influence of
mineral composition, pore fluid composition and stress state. Mechanics of
Materials 36: 435-451.
Nishida, Y. 1956. A
brief note on compression index of soils. Journal of Soil Mechanics and
Foundations Division, ASCE, 82, SM3, 1027-1-1027-14.
Purwana,
Y.M. & Nikraz, H. 2013. The correlation between the CBR and shear strength in
unsaturated soil conditions. International Journal of Transportation
Engineering 1: 211-222.
Rehan, R. & Nehdi,
M. 2005. Carbon dioxide emissions and climate change: Policy implications for
the cement industry. Environmental Science and Policy 8: 105-114.
Schiffman,
R.L., Pane, V. & Gibson, R.E. 1984. The theory of one-dimensional
consolidation of saturated clays: IV-An overview of the non-linear finite
strain sedimentation and consolidation. ASCE 1-29.
Taha, M.R., Ahmed, J. & Asmirza, S. 2000. One dimensional
consolidation of Kelang clay. Pertanika Journal of Science and Technology 8:
19-29.
Terzaghi, K. & Peck,
R.B. 1967. Soil Mechanics in Engineering Practice. 2nd ed. New York:
John Wiley and Sons.
Terzaghi,
K. 1943. Theoretical Soil Mechanics. New York: John Wiley
& Sons, Inc. p. 265.
Velosa, A.L. &
Cachim, P.B. 2009. Hydraulic-lime based concrete: Strength development using a
pozzolanic addition and different curing conditions. Construction and
Building Materials 23: 2107-2111.
Wong, L.S., Hashim, R.
& Ali, F. 2013. Improved strength and reduced permeability of stabilized
peat: Focus on application of kaolin as a pozzolanic additive. Construction
and Building Materials 40: 783-792.
Yilmaz, Y. &
Ozaydin, V. 2013. Compaction and shear strength characteristics of colemanite
ore waste modified active belite cement stabilized high plasticity soil. Engineering
Geology 155: 45-53.
*Corresponding author; email: mousavi@khiau.ac.ir
|