Sains Malaysiana 46(9)(2017): 1531–1540
http://dx.doi.org/10.17576/jsm-2017-4609-23
Landslide Factors and Susceptibility Mapping on Natural and
Artificial Slopes in Kundasang, Sabah
(Faktor Tanah Runtuh dan Pemetaan Kerentanan ke atas Cerun
Semula Jadi dan Buatan di Kundasang, Sabah)
KAMILIA SHARIR1, RODEANO ROSLEE2, LEE KHAI ERN3 & NORBERT SIMON1*
1School
of Environmental and Natural Resource Sciences, Faculty of Science &
Technology
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2School
of Science & Technology, Universiti Malaysia Sabah, UMS Road, 88400 Kota
Kinabalu, Sabah Negeri di Bawah Bayu, Malaysia
3Institute
for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia
43600
UKM Bangi, Selangor Darul Ehsan, Malaysia
Received:
9 December 2016/Accepted: 2 May 2017
ABSTRACT
This study was carried
out on the hilly topographic area in Kundasang, Sabah. This area
is known to be extremely prone to landslides that occurred either
naturally or by human interference to natural slopes. Aerial photographs
interpretations was conducted in order to identify landslide distributions
across three assessment years (2012, 2009 and 1984). These datasets
were classified into two landslides groups based on their occurrences;
natural and artificial. A total of 362 naturally occurring landslides
were identified and another 133 are artificial slope landslides.
Physical parameters which include lithology, slope angle, slope
aspect and soil series were analyzed with each landslide group
to examine the different influence of these parameters on each
of the group. From the analysis, the landslide density for the
natural landslide group shows that more than 35° slope angle and slope aspect facing east and southwest are
prone to landslides. In terms of geological materials, high landslide
density is recorded in the phyllite, shale, siltstone and sandstone
lithologies group and the Pinosuk, Kepayan and Trusmadi soil series.
In contrast, for the artificial slope landslide, high landslide
density is observed in the 25°-35° slope
angle and similar density in every slope aspect classes. The geological
materials however have similar landslide density across their
factors' classes. The landslide density technique was also used
to generate the landslide susceptibility maps for both landslide
conditions. Validation of the maps shows acceptable accuracy of
71% and 74%, respectively, for both natural and artificial slope
landslide susceptibility maps and this shows that these maps can
be used for future land use planning.
Keywords: Artificial
slope landslide; landslide; landslide density; landslide susceptibility;
natural landslide
ABSTRAK
Kajian ini dijalankan
di kawasan bertopografi tinggi yang terletak di Kundasang, Sabah.
Kawasan ini terkenal dengan kejadian tanah runtuh tinggi yang
berlaku secara semula jadi ataupun secara gangguan oleh manusia
pada cerun semula jadi. Penafsiran fotograf udara telah dilakukan
untuk mengenal pasti taburan tanah runtuh sepanjang tiga tahun
penilaian (2012, 2009 dan 1984). Set data ini telah dikelaskan
kepada dua kumpulan tanah runtuh berdasarkan kepada punca berlakunya
tanah runtuh, sama ada secara semula jadi atau pada cerun buatan.
Sejumlah 362 tanah runtuh semula jadi telah dikenal pasti manakala
133 tanah runtuh lagi berlaku di cerun buatan. Parameter fizikal;
litologi, sudut kecuraman cerun, aspek cerun dan siri tanah dianalisis
bersama dengan setiap kumpulan tanah runtuh untuk melihat perkaitannya
pada setiap kumpulan tersebut. Daripada analisis yang dibuat,
ketumpatan tanah runtuh dalam kumpulan tanah runtuh semula jadi
menunjukkan bahawa, sudut kecuraman cerun melebihi 35° dan aspek cerun yang menghadap arah timur dan barat daya
mempunyai tahap kerentanan tanah runtuh yang tinggi. Daripada
segi bahan geologi pula, ketumpatan tanah runtuh yang tinggi direkodkan
dalam batuan jenis filit, syal, batu lodak dan batu pasir serta
jenis tanah daripada siri Pinosuk, Kepayan dan Trusmadi. Bagi
ketumpatan tanah runtuh yang berlaku di cerun buatan manusia pula,
ketumpatan tinggi direkodkan pada sudut kecuraman cerun 25°-35°
dan hampir sama dalam setiap kelas aspek cerun. Daripada segi
bahan-bahan geologi pula, ketumpatan tanah runtuh adalah hampir
sama dalam semua kelas jenis batuan dan siri tanah. Teknik ketumpatan
tanah runtuh ini juga digunakan untuk menghasilkan peta kerentanan
tanah runtuh untuk kedua-dua set data ini. Pengesahan peta ini
menunjukkan nilai ketepatan yang boleh diterima iaitu 71% dan
74% masing-masing untuk peta kerentanan tanah runtuh semula jadi
dan cerun buatan manusia dan ini menunjukkan peta-peta ini boleh
digunakan dalam perancangan guna tanah pada masa hadapan.
Kata kunci: Kerentanan tanah runtuh; ketumpatan tanah runtuh;
tanah runtuh; tanah runtuh cerun buatan; tanah runtuh semula jadi
REFERENCES
Australian Geomechanics Society. 2007. Guideline for landslide
susceptibility, hazard and risk zoning for land use planning. Australian
Geomechanics 42(1): 13-36.
Ayalew, L. & Yamagishi, H. 2005. The application of GIS-based
logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko
Mountains, Central Japan. Geomorphology 65: 15-31.
Ayalew, L., Yamagishi, H., Marui, H. & Kanno, T. 2005.
Landslides in Sado Island of Japan: Part II. GIS-based susceptibility mapping
with comparisons of results from two methods and verifications. Eng. Geol. 81:
432-445.
Chalkias, C., Ferentinou, M. & Polykretis, C. 2014. GIS-based
landslide susceptibility mapping on the Peloponnese Peninsula, Greece. Geosciences 4: 176-190.
Dai, F.C. & Lee, C.F. 2002. Landslide characteristics and
slope instability modelling using GIS, Lantau Island, Hong Kong. Geomorphology 42: 213-228.
Dai, F.C., Lee, C.F., Li, J. & Xu, Z.W. 2001. Assessment of
landslide susceptibility on the natural terrain of Lantau Island, Hong Kong. Environ.
Geol. 40: 381-391.
Gomez, H. & Kavzoglu, T. 2005. Assessment of shallow landslide
susceptibility using artificial neural networks in Jabonosa River Basin,
Venezuela. Engineering Geology 78: 11-27.
Guzzetti, F., Reichenbach, P., Ardizzone, F., Cardinali, M. &
Galli, M. 2006. Estimating the quality of landslide susceptibility models. Geomorphology 81(1-2): 166-184.
Guzzetti, F., Reichenbach, P., Cardinali, M., Galli, M. &
Ardizzone, F. 2005. Landslide hazard assessment in the Staffora basin, northern
Italian Apennines. Geomorphology 72: 272-299.
Guzzetti, F., Carrara, A., Cardinali, M. & Reichenbach, P.
1999. Landslide hazard evaluation: A review of current techniques and their
application in a multi-scale study, Central Italy. Geomorphology 31:
181-216.
Hufschmidt, G. & Crozier, M.J. 2008. Evolution of natural
risk: Analysing changing landslide hazard in Wellington, Aotearoa/New Zealand. Natural
Hazards 45: 255-276.
Jabcoson, G. 1970. Gunung Kinabalu area, Sabah, Malaysia. Geol.
Surv. Malaysia. Report 8: 111.
Jadda, M., Shafri, H.Z.M., Mansor, S.B., Sharifika, M., &
Pirasteh, S. 2009. Landslide susceptibility evaluation and factor effect
analysis using probabilistic-frequency ratio model. European Journal of
Scientific Research 33(4): 654-668.
Fell, R., Corominas, J., Bonnard, C., Cascini, L., Leroi, E.,
Savage, W.Z. on behalf of the JTC-1 Joint Technical Committee on Landslides and
Engineered Slopes 2008. Guidelines for landslide susceptibility, hazard and
risk zoning for land use planning. Engineering Geology 102: 85-98.
Kolat, C., Doyuran, V., Ayday, C. & Süzen, M.L. 2006.
Preparation of a geotechnical microzonation model using geographical
information systems based on multicriteria decision analysis. Eng. Geol. 87:
241-255.
Komac, M. 2006. A landslide susceptibility model using the
analytical hierarchy process method and multivariate statistics in perialpine
Slovenia. Geomorphology 74: 17-28.
Magliulo, P., Antonio, D.L., Filippo, R. & Antonio, Z. 2008.
Geomorphology and landslide susceptibility assessment using GIS and bivariate
statistics: A case study in southern Italy. Natural Hazards 47(3):
411-435.
Nagarajan, R., Roy, A., Vinod, K.R., Mukherjee, A. & Khire,
M.V. 2000. Landslide hazard susceptibility mapping based on terrain and
climatic factors for tropical monsoon regions. Bull. Eng. Geol. Env. 58:
275-287.
Ohlmacher, G.C. & Davis, J.C. 2003. Using multiple logistic
regression and GIS technology to predict landslide hazard in northeast Kansas,
USA. Eng. Geol. 69: 331-343.
Ohlmacher, G.C. 2000. The relationship between geology and
landslide hazards of Atchison, Kansas and Vicnity. Current Research in Earth
Sciences: Kansas Geological Survey Bulletin 244: 1-6.
Oyagi, N. 1984. Landslides in weathered rocks and residuals soils
in Japan a surrounding areas: State-of-the-art report. Proceedings of the
4th International Symposium on Landslides, Toronto. pp. 1-31.
Rib, H.T. & Ta, L. 1978. Recognition and identification. In Landslides
Analysis and Control, Special Report, edited by Schuster, R.A. Washington:
National Academy of Science. 176: 34-80.
Roslee, R., Jamaluddin, T.A. & Talip, M.A. 2012. Landslide
susceptibility mapping (LSM) at Kota Kinabalu, Sabah, Malaysia using factor
analysis model (FAM). Journal of Advanced Science and Engineering Research 2:
80-103.
Roslee, R., Tahir, S., Zawawi, N.S.A., Mansor, H.E. & Omang,
S.A.K.S. 2008. Engineering geological assessment on slope design in the
mountainous area of Sabah Western, Malaysia: A case study from the Ranau -
Tambunan, Penampang - Tambunan and Kimanis - Keningau Road. An International
Conference on Recent Advances in Engineering Geology. Kuala Lumpur,
Malaysia.
Süzen, M.L. & Doyuran, V. 2004. Data driven bivariate landslide
susceptibility assessment using geographical information systems: A method and
application to Asarsuyu catchment, Turkey. Eng. Geol. 71: 303-321.
Simon, N., De Roiste, M., Crozier, M. & Rafek, A.G. 2017.
Representing landslides as polygon (areal) or points? How different data types
influence the accuracy of landslide susceptibility maps. Sains Malaysiana 46(1):
27-34.
Simon, N. 2012. Developing a systematic approach to susceptibility
mapping for landslides in natural and artificial slopes in an area undergoing
land use change, Kota Kinabalu, Sabah, Malaysia. Ph.D Thesis. Victoria
University of Wellington (Unpublished).
Tating,
F. 2006. Geological factors contributing to the landslide hazard area at the
Tamparuli - Ranau Highway, Sabah,
Malaysia. Proc. of
International Symposium on Geotechnical Hazards: Prevention, Mitigation and
Engineering Response. Yogyakarta, Indonesia. p. 10.
Thanapackiam,
P., Khairulmaini, O.S. & Fauza, A.G. 2012. Space-time behavior of Klang
Valley region slope failures. Sains Malaysiana 41(12): 1613-1620.
Tongkul,
F. 2007. Geological inputs in road design and construction in mountainous areas
of West Sabah, Malaysia. Second Malaysia-Japan Symposium on Geohazards and
Geoenvironmental Engineering Recent Advances. Langkawi, Malaysia.
van
Westen, C.J., Rengers, N. & Soeters, R. 2003. Use of geomorphological
information in indirect landslide susceptibility assessment. Nat. Hazards 30:
399-413.
Wieczorek,
G.F., Mandrone, G. & De Colla, L. 1997. The influence of hill slope shapes
on debris-flow initiation. In Debris Flow Hazard Mitigation: Mechanics,
Prediction, and Assessment, edited by Chen, C.L. New York: American Society
of Civil Engineers. pp. 21-31.
Yalcin,
A. 2008. GIS-based landslide susceptibility mapping using analytical hierarchy
process and bivariate statistics in Ardesen (Turkey): Comparisons of results
and confirmations, Turkey. Catena 72: 1-12.
Yang,
S. & Yeh, Y. 2015. Geologic hazard risk assessment of slopeland villages in
Southern Taiwan using remote sensing techniques. Sains Malaysiana 44(12):
1677-1683.
Zˆezere,
J.L., de Brum, F.A. & Rodrigues, M.L. 1999. The role of conditioning and
triggering factors in the occurrence of landslides: A case study in the area
north of Lisbon (Portugal). Geomorphology 30: 133-146.
*Corresponding author; email: norbsn@ukm.edu.my