Sains Malaysiana 48(10)(2019):
2093–2101
http://dx.doi.org/10.17576/jsm-2019-4810-04
Experimental Study of Drying
Characteristics and Mathematical Modeling for Air Drying of Germinated Brown
Rice
(Kajian Eksperimen Ciri Pengeringan dan Model Matematik untuk Pengeringan Udara Beras Perang)
ZHENWEI YU, KHURRAM YOUSAF, YU WANG
& KUNJIE CHEN*
Department of Agricultural
Engineering, College of Engineering, Nanjing Agricultural University, Nanjing,
Jiangsu 210031, P.R. China
Received: 3 June 2019/Accepted: 21
August 2019
ABSTRACT
In
view of existing problems in the drying process of germinated brown rice (GBR),
the self-made hot air drying test system was utilized. The drying medium
temperature and wind speed were selected as the drying parameters, and
different constraints were set for the test. The effects of the drying medium
temperature and wind speed on the drying rate and unit energy consumption were
examined, and the drying mathematical models of GBR were
established. The results perceived that as the temperature rose, and the wind
speed increased, the drying rate increased accordingly. When the temperature
was above 95°C, wind speed exceeded 3.6 m/s; the drying rate would not
change deliberately. When the temperature of the drying medium rose, the change
rate during the drying preheating stage and the deceleration stage increased
sharply, whereas the drying rate in the constant-speed drying stage increased,
and the drying time was greatly shortened. Unit energy consumption decreased
with the increase of temperature and increased with increasing wind speed.
Furthermore, when the drying temperature was ranged between 50°C and 80°C, the
unit energy consumption changed meaningfully; when the medium temperature was
between 80°C and 110°C, the unit heat consumption turned slowly. Wang and
Singh’s model could best simulate the drying process of GBR within
the experimental settings. And then comparing the RMSE and
under the various dry conditions, the data of Wang and Singh model were between
1.6% - 2.8% and 2.5×10-4 - 5×10-4. The R2 values of the model were
higher than 0.98.
Keywords:
Drying characteristics; energy consumption; germinated brown rice; mathematical
model; moisture content
ABSTRAK
Disebabkan masalah sedia ada dalam proses pengeringan percambahan beras perang (GBR), sistem ujian pengeringan udara panas buatan sendiri telah digunakan. Pengeringan suhu sederhana dan kelajuan angin dipilih sebagai parameter pengeringan dan kekangan berbeza ditetapkan untuk ujian. Kesan daripada pengeringan suhu sederhana dan kelajuan angin pada kadar pengeringan dan penggunaan tenaga unit disemak dan pengeringan model matematik GBR telah ditubuhkan. Keputusan menunjukkan apabila suhu meningkat dan kelajuan angin bertambah, kadar pengeringan meningkat dengan sewajarnya. Apabila suhu melebihi 95°C, kelajuan angin melebihi 3.6 m/s; kadar pengeringan tidak akan berubah secara terancang. Apabila suhu pengeringan itu meningkat, kadar perubahan pada peringkat pra-pemanasan pengeringan dan peringkat nyahpecutan meningkat secara mendadak, sedangkan kadar pengeringan pada peringkat pengeringan laju meningkat dan masa pengeringan telah banyak dipendekkan. Penggunaan tenaga unit menurun dengan peningkatan suhu dan meningkat dengan kelajuan angin. Tambahan pula, apabila suhu pengeringan berada dalam lingkungan 50°C hingga 80°C, penggunaan tenaga unit juga turut berubah; apabila suhu sederhana adalah antara 80°C dan 110°C, penggunaan haba unit bertukar menjadi perlahan. Model Wang dan Singh adalah stimulasi terbaik bagi proses pengeringan GBR dalam tetapan uji kaji. Apabila perbandingan RMSE dijalankan pada pelbagai keadaan pengeringan, data bagi model Wang dan Singh adalah antara 1.6%-2.8% dan 2.5 × 10-4-5
× 10-4. Nilai model R2 ini lebih tinggi daripada 0.98.
Kata kunci: Ciri pengeringan; kandungan lembapan; model matematik; penggunaan tenaga; percambahan beras perang
REFERENCES
Argo, B.D., Sandra, S. & Ubaidillah,
U. 2018. Mathematical modeling on the thin layer drying kinetics of cassava
chips in a multipurpose convective-type tray dryer heated by a gas burner. Journal
of Mechanical Science and Technology 32(7): 3427-3435.
Aykin-Dincer, E.
& Erbas, M. 2018. Drying kinetics, adsorption
isotherms and quality characteristics of vacuum-dried beef slices with
different salt contents. Meat Sci. 145: 114-120.
Bordiga, M.,
Gomez-Alonso, S., Locatelli, M., Travaglia, F., Coïsson, J.D., Hermosin-Gutierrez,
I. & Arlorio, M. 2014. Phenolics characterization and antioxidant activity of six different pigmented Oryza sativa L. cultivars grown in Piedmont
(Italy). Food Res. Int. 65: 282-290.
Cáceres,
P.J., Peñas, E., Martinez-Villaluenga,
C., Amigo, L. & Frias, J. 2017. Enhancement of biologically active
compounds in germinated brown rice and the effect of sun-drying. J. Cereal
Sci. 73: 1-9.
Caceres, P.J., Martinez-Villaluenga, C.,
Amigo, L. & Frias, J. 2014. Assessment on proximate composition, dietary
fiber, phytic acid and protein hydrolysis of
germinated Ecuatorian brown rice. Plant Foods Hum. Nutr. 69(3): 261-267.
Canabarro,
N.I., Mazutti, M.A. & Carmo Ferreira, M. 2019. Drying of olive (Olea europaeaL.) leaves on a conveyor belt for supercritical
extraction of bioactive compounds: Mathematical modeling of drying/extraction
operations and analysis of extracts. Industrial Crops and Products 136:
140-151.
Chandra Mohan, V.P. & Talukdar, P.
2010. Three
dimensional numerical modeling of simultaneous heat and moisture transfer in a
moist object subjected to convective drying. International Journal of Heat and Mass Transfer 53(21):
4638-4650.
Chungcharoen Hatchapol, Prachayawarakorn Somkiat, Tungtrakul Patcharee & Soponronnarit Somchart. 2014. Effects of germination process and drying
temperature on gamma-aminobutyric acid (GABA) and starch digestibility of
germinated brown rice. Dry. Technol. 32(6): 742-753.
El Khadraoui, A., Hamdi,
I., Kooli, S. & Guizani,
A. 2019. Drying of red pepper slices in a solar greenhouse dryer and under open
sun: Experimental and mathematical investigations. Innov.
Food Sci. Emerg. Technol. 52: 262-270.
Hao,
C.L., Lin, H.L., Ke, L.Y., Yen, H.W. & Shen, K.P.
2019. Pre-germinated brown rice extract ameliorates high-fat diet-induced
metabolic syndrome. J. Food Biochem. 43(3):
e12769.
Idlimam, A., Lamharrar, A., Bougayr, E.H., Kouhila, M. & Lakhal, E.K.
2016. Solar convective drying in thin layers and modeling of municipal waste at
three temperatures. Appl. Therm. Eng. 108(9): 41-47.
Jian, F. & Jayas, D.S. 2018.
Characterization of isotherms and thin-layer drying of red kidney beans, Part
I: Choosing appropriate empirical and semitheoretical models. Dry. Technol. 36(14): 1696-1706.
Lakshmi, D.V.N., Muthukumar, P., Layek, A. & Nayak, P.K. 2018.
Drying kinetics and quality analysis of black turmeric (Curcuma caesia) drying in a mixed mode forced convection solar
dryer integrated with thermal energy storage. Renew. Energy 120: 23-34.
Lee, J.H. & Zuo, L. 2013.
Mathematical modeling on vacuum drying of Zizyphus jujubaMiller slices. J. Food Sci. Technol. 50(1):
115-121.
Lee, Y.T., Shim, M.J., Goh, H.K., Mok,
C. & Puligundla, P. 2019. Effect of jet milling
on the physicochemical properties, pasting properties, and in vitro starch
digestibility of germinated brown rice flour. Food Chem. 282: 164-168.
Leite, L.d.S., Matsumoto, T. & Albertin,
L.L. 2018. Mathematical modeling of thermal drying of facultative pond sludge. J.
Environ. Eng. 144(9): 04018079.
Li, K., Hu, G., Yu, S., Tang, Q. & Liu, J. 2018. Effect of the
iron biofortification on enzymes activities and antioxidant
properties in germinated brown rice. J. Food Meas. Charact. 12(2): 789-799.
Li, Y., Su, X., Shi, F., Wang, L. & Chen, Z. 2017.
High-temperature air-fluidization-induced changes in the starch texture,
rheological properties, and digestibility of germinated brown rice. Starch - Stärke69(9-10): 1600328.
Liu, K., Zhao, S., Li, Y. & Chen, F. 2018. Analysis of
volatiles in brown rice, germinated brown rice, and selenised germinated brown rice during storage at different vacuum levels. J. Sci.
Food. Agric. 98(6): 2295-2301.
Liu, X.C., Qin, N. & Luo, Y.K. 2016. Application of a
combination model based on an error-correcting technique to predict quality
changes of vacuum-packed bighead carp (Aristichthys nobilis) fillets. LWT-Food Sci. Technol. 74:
514-520.
Mujaffar, S.
& Sankat, C.K. 2015. Modeling the drying behavior
of unsalted and salted catfish (Arius sp.) Slabs. J. Food Process. Preserv. 39(6): 1385-1398.
Ranmeechai, N. & Photchanachai, S. 2017. Effect of modified atmosphere
packaging on the quality of germinated parboiled brown rice. Food Sci. Biotechnol. 26(2): 303-310.
Sahin, U. & Ozturk,
H.K. 2016. Effects of pulsed vacuum osmotic dehydration (PVOD) on drying
kinetics of figs (Ficus carica L). Innov. Food Sci. Emerg. Technol. 36: 104-111.
Shen,
L., Zhu, Y., Wang, L., Liu, C., Liu, C. & Zheng, X. 2019 Improvement of
cooking quality of germinated brown rice attributed to the fissures caused by
microwave drying. J.Food Sci. Technol. 56: 2737-2749.
Vijayan, S., Arjunan, T.V. & Kumar, A. 2016. Mathematical modeling
and performance analysis of thin layer drying of bitter gourd in sensible
storage based indirect solar dryer. Innovative Food Science and Emerging
Technologies 36: 59-67.
Yodpitak Sittidet, Sugunya Mahatheeranont, Dheerawan Boonyawan, Phumon Sookwong, Sittiruk Roytrakul & Orranuch Norkaew. 2019. Cold plasma treatment to improve germination
and enhance the bioactive phytochemical content of germinated brown rice. Food
Chemistry 289: 328-339.
Yousaf, K., Abbas, A.,
Zhang, X., Soomro, S.A., Ameen, M. & Chen, K.
2018. Effect of multi-stage drying on energy consumption, the rate of drying,
rice quality and its optimization during parboiling process. Fresenius
Environmental Bulletin 27: 8270-8279.
*Corresponding author; email:
kunjiechen@njau.edu.cn
|