Sains Malaysiana 48(10)(2019):
2221–2227
http://dx.doi.org/10.17576/jsm-2019-4810-18
Effect of P-Hydroxycinnamic
Acid in Mice Model of Cerebral Ischemia-Reperfusion Injury
(Kesan Asid P-Hidroksisinamik dalam Model Tikus dengan Kecederaan Serebrum Iskemia-Reperfusi)
ROMGASE SAKAMULA,
CHANIKARN
SAKDAPITAK
& WACHIRYAH THONG-ASA*
Physiology division, Animal Toxicology and Physiology, Specialty
Research Unit (ATPSRU), Department of Zoology, Faculty of Science,
Kasetsart University, Bangkok 10900, Thailand
Received: 3 April 2019/Accepted:
8 August 2019
ABSTRACT
Multiple
pathomechanisms of cerebral ischemia reperfusion
(I/R) injuries can be ameliorated by certain high-potential pharmaceutical
substances. In the present study, we investigated the acute effect
of p-hydroxycinnamic (pHCA) acid
against cerebral I/R injury in mice. Thirty male ICR mice
were divided into Sham, Control-I/R, and pHCA-I/R
groups. The pHCA 100
mg/kg and the vehicle were given 30 min before I/R induction. Thirty-minute
bilateral common carotid artery occlusion followed by 45-min reperfusion
was performed on the Control-I/R and pHCA-I/R
groups. Brains were collected for biochemical analysis, infarction
and histological study of the cerebral cortex and corpus callosum
(CC).
The results showed that I/R induction significantly induced biochemical
changes (p<0.05) along with the increase of brain infarction
(p<0.05), percentage of degeneration in cerebral cortex (p<0.05)
and decrease of CC white
matter density (p<0.05). Pretreatment with pHCA significantly
reduced MDA (p<0.05), brain infarction (p<0.05),
cerebral cortex neuronal degeneration (p<0.05) and prevented
the reduction of white matter density in the CC (p<0.05).
The present study concluded that pretreatment with pHCA helps prevent cerebral I/R injury
by amelioration of lipid peroxidation, white matter damage and neuronal
degeneration.
Keywords:
Brain ischemia; infarction; oxidative stress; p-hydroxycinnamic
acid; white matter
ABSTRAK
Pelbagai patologi
mekanisme kecederaan
serebrum iskemia-reperfusi (I/R)
boleh diperbaikkan oleh beberapa bahan
farmaseutik berpotensi
tinggi. Dalam penyelidikan
ini, kami mengkaji
kesan akut p-hidroksisinamik
(pHCA) terhadap
kecederaan I/R serebrum
pada tikus. Tiga
puluh tikus
ICR jantan dibahagikan kepada Sham, kawalan-I/R, dan kumpulan pHCA-I/R. PHCA 100
mg/kg dan pembawa
diberikan 30 min sebelum induksi I/R. Oklusi arteri karotid selama 12 min diikuti oleh reperfusi 45 min dilakukan pada kumpulan Kawalan-I/R dan pHCA-I/R.
Tisu otak dikumpulkan
untuk analisis
biokimia, infarksi dan kajian histologi
korteks serebrum
dan korpus kalosum
(CC).
Keputusan menunjukkan
bahawa induksi I/R menunjukkan perubahan biokimia yang ketara (p<0.05)
dengan peningkatan infarksi otak (p<0.05), peratusan degenerasi dalam korteks serebrum
(p<0.05). Pra-rawatan dengan
pHCA mengurangkan
MDA
(p<0.05), infarksi otak (p<0.05), degenerasi neuron
korteks serebrum
(p<0.05) dan menghalang
pengurangan kepadatan bahan putih otak
di CC (p<0.05). Kajian ini menyimpulkan bahawa prarawatan dengan pHCA membantu mencegah kecederaan otak I/R dengan memperbaik peroksidasi lipid, kerosakan bahan putih otak
dan degenerasi
neuron.
Kata kunci: Asid p-hidroksisinamik; bahan putih otak; infarksi;
iskemia otak;
tekanan oksidatif
REFERENCES
Abdel-Wahab, M.H., El-Mahdy, M.A., Abd-Ellah, M.F., Helal, G.K., Khalifa, F. & Hamada,
F.M. 2003. Influence of p-coumaric acid
on doxorubicin-induced oxidative stress in rat’s heart. Pharmacol.
Res. 48(5): 461-465.
Amalan, V.,
Natesan, V., Dhananjayan, I. &
Arumugam, R. 2016. Antidiabetic and antihyperlipidemic activity of p-coumaric
acid in diabetic rats, role of pancreatic GLUT 2: In vivo approach.
Biomedicine & Pharmacotherapy 84: 230-236.
Chaitanya, G.V. & Babu, P.P. 2008.
Activation of calpain, cathepsin-b
and caspase-3 during transient focal cerebral ischemia in rat model.
Neurochem. Res. 33(11): 2178-2186.
Elmore, S.A., Dixon, D., Hailey, J.R., Harada, T., Herbert, R.A.,
Maronpot, R.R., Nolte, T., Rehg,
J.E., Rittinghausen, S., Rosol,
T.J., Satoh, H., Vidal, J.D., Willard-Mack, C.L. & Creasy, D.M.
2016. Recommendations from the INHAND Apoptosis/Necrosis Working
Group. Toxicol. Pathol. 44(2):
173-188.
Fentem, J.H.
& Fry, J.R. 1992. Metabolism of coumarin
by rat, gerbil and human liver microsomes.
Xenobiotica 22: 357-367.
Fishbein, M.C.,
Meerbaum, S., Rit,
J., Lando, U., Kanmatsuse,
K., Mercier, J.C., Corday, E., & Ganz, W. 1981. Early phase
acute myocardial infarct size quantification: Validation of the
triphenyl tetrazolium chloride tissue
enzyme staining technique. Am. Heart J. 101(5): 593-600.
Guven, M.,
Aras, A.B., Akman, T., Sen, H.M., Ozkan,
A., Salis, O., Sehitoglu,
I., Kalkan, Y., Silan,
C., Deniz, M. & Cosar, M. 2015.
Neuroprotective effect of p-coumaric acid
in rat model of embolic cerebral ischemia. Iran J. Basic. Med.
Sci. 18(4): 356-363.
Hadwan, M.H.
& Abed, H.N. 2016. Data supporting the spectrophotometric method
for the estimation of catalase activity. Data in Brief 6:
194-199.
Hou, S.T.
& MacManus, J.P. 2002. Molecular mechanisms of cerebral ischemia-induced
neuronal death. International Review of Cytology 221: 93-148.
Kalogeris, T.,
Baines, C.P., Krenz, M. & Korthuis,
R.J. 2012. Chapter Six - Cell biology of ischemia/reperfusion injury.
International Review of Cell and Molecular Biology 298: 229-317.
Konishi, Y.,
Hitomi, Y. & Yoshioka, E. 2004. Intestinal absorption
of p-coumaric and gallic
acids in rats after oral administration. Journal of Agricultural
and Food Chemistry 52: 2527-2532.
Ladecola, C.
& Anrather, J. 2011. Stroke research
at a crossroad: Asking the brain for directions. Nature Neuroscience
14(11): 1363-1368.
Lake, B.G. 1999. Coumarin metabolism, toxicity
and carcinogenicity: Relevance for human risk assessment. Food
and Chemical Toxicology 37: 423-453.
Lee, J.M., Grabb, M.C., Zipfel, G.J. &
Choi, D.W. 2000. Brain tissue responses to ischemia. The Journal
of Clinical Investigation 106: 723-731.
Lowry, O.H., Rosebrough, N.J., Farr, A.L.
& Randall, R.J. 1951. Protein measurement with the Folin
phenol reagent. J. Biol. Chem. 193(1): 265-275.
Luo, Y., Ma, H., Zhou, J.J., Li, L., Chen, S.R., Zhang, J., Chen,
L. & Pan, H.L. 2018. Focal cerebral ischemia and reperfusion
induce brain injury through α2δ-1-bound NMDA receptors.
Stroke 49: 2464-2472.
Martin, L.J., Al-Abdulla, N.A., Brambrink,
A.M., Kirsch, J.R., Sieber, F.E. &
Portera-Cailliau, C. 1998. Neurodegeneration in excitotoxicity, global cerebral ischemia, and target deprivation:
A perspective on the contributions of apoptosis and necrosis. Brain
Research Bulletin 46(4): 281-309.
Mehta, S.L., Kumari, S., Mendelev, N. & Li, P.A. 2012. Selenium preserves mitochondrial
function, stimulates mitochondrial biogenesis, and reduces infarct
volume after focal cerebral ischemia. BMC Neurosci.
13: 79.
Mehta, S.L., Manhas, N. & Raghubir, R. 2007. Molecular targets in cerebral ischemia
for developing novel therapeutics. Brain Research Reviews 54(1):
34-66.
Mendelow, A.D.,
Graham, D.I., McCulloch, J. & Mohamed, A.A. 1984. The distribution
of ischaemic damage and cerebral blood
flow after unilateral carotid occlusion and hypotension in the rat.
Stroke 15(4): 704-710.
Pan, J., Konstas, A.A., Bateman, B., Ortolano, G.A. & Pile- Spellman, J. 2007. Reperfusion
injury following cerebral ischemia: Pathophysiology, MR imaging,
and potential therapies. Neuroradiology 49(2): 93-102.
Paxinos, G.
& Franklin, K. 2008. The Mouse Brain in Stereotaxic Coordinates.
3rd ed. New York: Academic Press. p. 360.
Pei, K., Ou, J., Huang, J. & Ou, S. 2015. p-Coumaric acid and
its conjugates: Dietary sources, pharmacokinetic properties and
biological activities. J. Sci. Food Agric. 96(9): 2952-2962.
Phillis, J.W., O’Regan, M.H. & Donard, S.D. 2002. Energy utilization in the ischemic/reperfused brain. International Review of Neurobiology
51: 377-414.
Raghavendra, M.,
Rituparna, M., Shafalika, K., Anshuman, T., Sumit, M. & Acharya,
S.B. 2009. Role of Centella
asiatica on cerebral post-ischemic reperfusion and long-term
hypoperfusion in rats. Int. J. Green
Pharm. 3(2): 88-96.
Shuaib, A.
& Breker-Klassen, M.M. 1997. Inhibitory
mechanisms in cerebral ischemia: A brief review. Neuroscience
& Biobehavioral Reviews 21(2): 219-226.
Small, D.L., Morley, P. & Buchan, A.M. 1999. Biology of ischemic
cerebral cell death. Progress in Cardiovascular Diseases 42(3):
185-207.
Spare, P.D. 1964. A stable murexide reagent
for the estimation of calcium in micro quantities of serum. Clinical
Chemistry 10(8): 726-729.
Ueda, H. & Fujita, R. 2004. Cell death mode switch from necrosis
to apoptosis in brain. Biol. Pharm. Bull. 27(7): 950-955.
Wachiryah Thong-asa
& Kanokwan Tilokskulchai. 2014. Neuronal damage of the dorsal hippocampus
induced by long-term right common carotid artery occlusion in rats.
Iran J. Basic Med. Sci. 17(3): 220-226.
Wachiryah Thong-asa,
Panas Tumkiratiwong, Vasakorn Bullangpoti, Kasem Kongnirundonsuk & Kanokwan Tilokskulchai. 2017. Tiliacora
triandra (Colebr.)
Diels leaf extract enhances spatial learning and learning flexibility,
and prevents dentate gyrus neuronal damage induced by cerebral ischemia/reperfusion
injury in mice. Avicenna Journal of Phytomedicine
7(5): 389-400.
Wachiryah Thong-asa,
Kanokwan Tilokskulchai, Supin Chompoopong, Mayuree Hantrakul & Tantisira. 2015.
Early onset effects of mild chronic cerebral hypoperfusion
on the dorsal hippocampus and white matter areas: The use of male
Sprague-Dawley rats as a UCO model. Journal of Neurological Sciences
32(1): 030-039.
Wakita, H.,
Tomimoto, H., Akiguchi, I., Matsuo,
A., Lin, J.X., Ihara, M. & McGeer,
P.L. 2002. Axonal damage and demyelination in the white matter after
chronic cerebral hypoperfusion in the
rat. Brain Res. 924(1): 63-70.
Wang, Y., Liu, G., Hong, D., Chen, F., Ji, X. & Cao, G. 2016.
White matter injury in ischemic stroke. Prog.
Neurobiol. 141: 45-60.
White, B.C., Sullivan, J.M., DeGracia,
D.J., O’ Neil, B.J., Neumar, R.W., Grossman,
L.I., Rafols, J.A. & Krause, G.S. 2000. Brain ischemia and reperfusion:
Molecular mechanisms of neuronal injury. Journal of the Neurological
Sciences 179: 1-33.
Yoon, J.H., Youn, K., Ho, C.T., Karwe, M.V., Jeong, W.S. & Jun,
M. 2014. p-Coumaric acid and ursolic acid from Corni fructus attenuated beta-amyloid (25-35)-induced toxicity through
regulation of the NF-kappaB signaling
pathway in PC12 cells. J. Agric. Food Chem. 62(21): 4911-4916.
*Corresponding author; email:
fsciwyth@ku.ac.th
|