Sains Malaysiana 48(12)(2019):
2807–2815
http://dx.doi.org/10.17576/jsm-2019-4812-22
Study on Numerical Solution of a
Variable Order Fractional Differential Equation based on Symmetric
Algorithm
(Kajian
Penyelesaian Berangka Peringkat Berubah Persamaan Pembezaan Pecahan
berdasarkan Algoritma Simetri)
Jingrui Liu & Dongyang Pan*
The
School of Mathematics and Computer Science, Xinyang Vocational and
Technical College, Xinyang, 464000, China
Received:
21 February 2019/ Accepted: 23 December 2019
ABSTRAK
As the class of fractional differential
equations with changing order has attracted more attention and attention
in the fields of research and engineering, it is important to study
its numerical solutions. Numerical solution algorithm for a class
of fractional differential equations with transformed arrays based
on the proposed symmetry algorithm. The symmetry classification
is used for the class of values of the boundary problem of the fractional
differential equation with the order of change. A fully symmetric
classification of the boundary value problem for a class of fractional
differential equations with variable sequences is determined by
using a fully symmetric differential sequence sorting algorithm.
The problem of the boundary value of the fractional differential
equation with the transformed order is reduced to the initial value
of the ordinary differential equation. The Legendre polynomial method
is used to solve the numerical solution of the starting value of
the differential equation. The common differential equation is transformed
into a matrix series product by a different operator matrix. The
matrix products are converted to algebraic equations by discrete
variables. By solving the equations, the numerical solution of the
starting value of the common differential equation is obtained.
Keywords: Boundary value problem;
differential equation; numerical solution; operator matrix; symmetric
algorithm; variable fractional order
ABSTRAK
Oleh kerana kelas persamaan pembezaan
pecahan dengan susunan berubah telah menarik banyak perhatian dan
perhatian dalam bidang penyelidikan dan kejuruteraan, ia amat penting
untuk mengkaji penyelesaian berangkanya. Algoritma penyelesaian
berangka untuk kelas persamaan pembezaan pecahan dengan transformasi
tatasusunan berdasarkan algoritma simetri yang dicadangkan. Pengelasan
simetri digunakan untuk nilai kelas masalah sempadan persamaan pembezaan
pecahan dengan susunan berubah. Pengelasan simetrik sepenuhnya masalah
nilai sempadan untuk kelas persamaan pembezaan pecahan dengan jujukan
pemboleh ubah ditentukan dengan menggunakan algoritma pengisihan
jujukan pembezaan simetrik sepenuhnya. Masalah nilai sempadan persamaan
pembezaan pecahan dengan peringkat berubah dikurangkan kepada masalah
nilai awal persamaan pembezaan biasa. Kaedah polinomial Legendre
digunakan untuk menyelesaikan penyelesaian berangka masalah nilai
permulaan persamaan pembezaan. Persamaan pembezaan biasa diubah
menjadi produk siri matriks oleh pengendali matriks lain. Produk
matriks ditukar kepada persamaan algebra oleh variat diskret. Dengan
menyelesaikan persamaan, penyelesaian berangka nilai permulaan persamaan
pembezaan biasa diperoleh.
Kata
kunci: Algoritma simetri; masalah nilai sempadan; matriks pengendali;
penyelesaian berangka; peringkat pecahan berubah; persamaan pembezaan
REFERENCES
Baeumer,
B., Geissert, M. & Kovács, M. 2015. Existence, uniqueness and
regularity for a class of semilinear stochastic Volterra equations
with multiplicative noise. Journal
of Differential Equations 258(2): 535-554.
Bauer,
M., Escher, J. & Kolev, B. 2015. Local and global well-posedness
of the fractional order EPDiff equation on R d R d mathContainer
Loading Mathjax. Journal of Differential Equations 258(6):
2010-2053.
Bhrawy,
A.H. & Zaky, M.A. 2016. Numerical algorithm for the variable-order
Caputo fractional functional differential equation. Nonlinear Dynamics 85(3): 1815-1823.
Bhrawy,
A.H. & Zaky, M.A. 2015. Numerical simulation for two-dimensional
variable-order fractional nonlinear cable equation. Nonlinear Dynamics 80(1-2): 101-116.
Carrillo,
J.A., Huang, Y. & Santos, M.C. 2015. Exponential convergence
towards stationary states for the 1D porous medium equation with
fractional pressure. Journal of Differential Equations 258(3):
736-763.
Cozzi,
M. & Passalacqua, T. 2016. One-dimensional solutions of non-local
Allen-Cahn-type equations with rough kernels. Journal of Differential Equations 260(8): 6638-6696.
Danca,
M.F. 2015. Lyapunov exponents of a class of piecewise continuous
systems of fractional order. Nonlinear
Dynamics 81(1-2): 227-237.
El-Sayed,
A.A. & Agarwal, P. 2019. Numerical solution of multiterm variable-order
fractional differential equations via
shifted Legendre polynomials. Mathematical
Methods in the Applied Sciences 42(2): 3978-3991.
Harko,
T. & Liang, S.D. 2016. Exact solutions of the Liénard- and generalized
Liénard-type ordinary nonlinear differential equations obtained
by deforming the phase space coordinates of the linear harmonic
oscillator. Journal of Engineering Mathematics 98(1):
93-111.
Liu, Y.,
Du, Y.W. & Li, H. 2015. A two-grid finite element approximation
for a nonlinear time-fractional Cable equation. Nonlinear
Dynamics 85(4): 1-14.
Pan, X.L., Wang, Z.W.
& Wei, D.
2017. Nonlinear dynamic model simulation of proton exchange membrane
fuel cell based on load change. Chinese
Journal of Power Sources 41(2): 227-229.
Rossi,
J.D. & Topp, E. 2016. Large solutions for a class of semilinear
integro-differential equations with censored jumps. Journal of Differential Equations 260(9): 6872-6899.
Shao, S.Y. & Chen, M.
2015. Synchronization control for a class of fractional order nonlinear
chaotic systems. Computer Simulation 32(4): 394-398.
Wang, D.D., Zhang, B. & Qiu, D.Y.
2017. Phasor analysis method and study of sinusoidal steady state
characteristics of the fractional-order circuits. Journal of Power Supply 15(2): 34-40.
Yu, J.,
Wang, D.S. & Sun, Y. 2016. Modified method of simplest equation
for obtaining exact solutions of the Zakharov–Kuznetsov equation,
the modified Zakharov–Kuznetsov equation, and their generalized
forms. Nonlinear Dynamics 85(4): 2449-2465.
Zhang,
W., Liu, W. & Li, W. 2015. Independently tunable multichannel
fractional-order temporal differentiator based on a silicon-photonic
symmetric Mach–Zehnder interferometer incorporating cascaded microring
resonators. Journal of Lightwave Technology 33(2):
361-367.
Zhang, Y., Qin, Z.C.
& Zhang, W.D.
2017. Asymmetric interference alignment for device-to-device underlaying
cellular networks. Journal
of China Academy of Electronics and Information Technology 12(6):
232-236.
Zúñiga-Aguilar,
C.J., Romero-Ugalde, H.M. & Gómez-Aguilar, J.F. 2017. Solving
fractional differential equations of variable-order involving operators
with Mittag-Leffler kernel using artificial neural networks. Chaos Solitons & Fractals 103(2): 382-403.
*Corresponding
author; email: paneastsun@163.com
|