Sains Malaysiana 48(12)(2019): 2807–2815

http://dx.doi.org/10.17576/jsm-2019-4812-22

 

 

Study on Numerical Solution of a Variable Order Fractional Differential Equation based on Symmetric Algorithm

(Kajian Penyelesaian Berangka Peringkat Berubah Persamaan Pembezaan Pecahan berdasarkan Algoritma Simetri)

 

Jingrui Liu & Dongyang Pan*

 

The School of Mathematics and Computer Science, Xinyang Vocational and Technical College, Xinyang, 464000, China

 

Received: 21 February 2019/ Accepted: 23 December 2019

 

 

ABSTRAK

As the class of fractional differential equations with changing order has attracted more attention and attention in the fields of research and engineering, it is important to study its numerical solutions. Numerical solution algorithm for a class of fractional differential equations with transformed arrays based on the proposed symmetry algorithm. The symmetry classification is used for the class of values of the boundary problem of the fractional differential equation with the order of change. A fully symmetric classification of the boundary value problem for a class of fractional differential equations with variable sequences is determined by using a fully symmetric differential sequence sorting algorithm. The problem of the boundary value of the fractional differential equation with the transformed order is reduced to the initial value of the ordinary differential equation. The Legendre polynomial method is used to solve the numerical solution of the starting value of the differential equation. The common differential equation is transformed into a matrix series product by a different operator matrix. The matrix products are converted to algebraic equations by discrete variables. By solving the equations, the numerical solution of the starting value of the common differential equation is obtained.

Keywords: Boundary value problem; differential equation; numerical solution; operator matrix; symmetric algorithm; variable fractional order

 

ABSTRAK

Oleh kerana kelas persamaan pembezaan pecahan dengan susunan berubah telah menarik banyak perhatian dan perhatian dalam bidang penyelidikan dan kejuruteraan, ia amat penting untuk mengkaji penyelesaian berangkanya. Algoritma penyelesaian berangka untuk kelas persamaan pembezaan pecahan dengan transformasi tatasusunan berdasarkan algoritma simetri yang dicadangkan. Pengelasan simetri digunakan untuk nilai kelas masalah sempadan persamaan pembezaan pecahan dengan susunan berubah. Pengelasan simetrik sepenuhnya masalah nilai sempadan untuk kelas persamaan pembezaan pecahan dengan jujukan pemboleh ubah ditentukan dengan menggunakan algoritma pengisihan jujukan pembezaan simetrik sepenuhnya. Masalah nilai sempadan persamaan pembezaan pecahan dengan peringkat berubah dikurangkan kepada masalah nilai awal persamaan pembezaan biasa. Kaedah polinomial Legendre digunakan untuk menyelesaikan penyelesaian berangka masalah nilai permulaan persamaan pembezaan. Persamaan pembezaan biasa diubah menjadi produk siri matriks oleh pengendali matriks lain. Produk matriks ditukar kepada persamaan algebra oleh variat diskret. Dengan menyelesaikan persamaan, penyelesaian berangka nilai permulaan persamaan pembezaan biasa diperoleh.

Kata kunci: Algoritma simetri; masalah nilai sempadan; matriks pengendali; penyelesaian berangka; peringkat pecahan berubah; persamaan pembezaan

 

REFERENCES

 

Baeumer, B., Geissert, M. & Kovács, M. 2015. Existence, uniqueness and regularity for a class of semilinear stochastic Volterra equations with multiplicative noise. Journal of Differential Equations 258(2): 535-554.

Bauer, M., Escher, J. & Kolev, B. 2015. Local and global well-posedness of the fractional order EPDiff equation on R d R d mathContainer Loading Mathjax. Journal of Differential Equations 258(6): 2010-2053.

Bhrawy, A.H. & Zaky, M.A. 2016. Numerical algorithm for the variable-order Caputo fractional functional differential equation. Nonlinear Dynamics 85(3): 1815-1823.

Bhrawy, A.H. & Zaky, M.A. 2015. Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation. Nonlinear Dynamics 80(1-2): 101-116.

Carrillo, J.A., Huang, Y. & Santos, M.C. 2015. Exponential convergence towards stationary states for the 1D porous medium equation with fractional pressure. Journal of Differential Equations 258(3): 736-763.

Cozzi, M. & Passalacqua, T. 2016. One-dimensional solutions of non-local Allen-Cahn-type equations with rough kernels. Journal of Differential Equations 260(8): 6638-6696.

Danca, M.F. 2015. Lyapunov exponents of a class of piecewise continuous systems of fractional order. Nonlinear Dynamics 81(1-2): 227-237.

El-Sayed, A.A. & Agarwal, P. 2019. Numerical solution of multiterm variable-order fractional differential equations via shifted Legendre polynomials. Mathematical Methods in the Applied Sciences 42(2): 3978-3991.

Harko, T. & Liang, S.D. 2016. Exact solutions of the Liénard- and generalized Liénard-type ordinary nonlinear differential equations obtained by deforming the phase space coordinates of the linear harmonic oscillator. Journal of Engineering Mathematics 98(1): 93-111.

Liu, Y., Du, Y.W. & Li, H. 2015. A two-grid finite element approximation for a nonlinear time-fractional Cable equation. Nonlinear Dynamics 85(4): 1-14.

Pan, X.L., Wang, Z.W. & Wei, D. 2017. Nonlinear dynamic model simulation of proton exchange membrane fuel cell based on load change. Chinese Journal of Power Sources 41(2): 227-229.

Rossi, J.D. & Topp, E. 2016. Large solutions for a class of semilinear integro-differential equations with censored jumps. Journal of Differential Equations 260(9): 6872-6899.

Shao, S.Y. & Chen, M. 2015. Synchronization control for a class of fractional order nonlinear chaotic systems. Computer Simulation 32(4): 394-398.

Wang, D.D., Zhang, B. & Qiu, D.Y. 2017. Phasor analysis method and study of sinusoidal steady state characteristics of the fractional-order circuits. Journal of Power Supply 15(2): 34-40.

Yu, J., Wang, D.S. & Sun, Y. 2016. Modified method of simplest equation for obtaining exact solutions of the Zakharov–Kuznetsov equation, the modified Zakharov–Kuznetsov equation, and their generalized forms. Nonlinear Dynamics 85(4): 2449-2465.

Zhang, W., Liu, W. & Li, W. 2015. Independently tunable multichannel fractional-order temporal differentiator based on a silicon-photonic symmetric Mach–Zehnder interferometer incorporating cascaded microring resonators. Journal of Lightwave Technology 33(2): 361-367.

Zhang, Y., Qin, Z.C. & Zhang, W.D. 2017. Asymmetric interference alignment for device-to-device underlaying cellular networks. Journal of China Academy of Electronics and Information Technology 12(6): 232-236.

Zúñiga-Aguilar, C.J., Romero-Ugalde, H.M. & Gómez-Aguilar, J.F. 2017. Solving fractional differential equations of variable-order involving operators with Mittag-Leffler kernel using artificial neural networks. Chaos Solitons & Fractals 103(2): 382-403.

 

*Corresponding author; email: paneastsun@163.com

 

 

 

 

 

previous