Sains Malaysiana 48(8)(2019): 1619–1625
http://dx.doi.org/10.17576/jsm-2019-4808-07
Inhibitory Effects of Melicope ptelefoliaExtract
on Compound Action Potentials in Frog Sciatic Nerves and Its Possible Mechanism
of Action
(Kesan Perencat Ekstrak Melicope ptelefoliapada Potensi Tindakan Sebatian dalam Saraf Skiatik Katak dan Tindakan Mekanisme Kemungkinan)
JASMINE SIEW MIN CHIA, AMMAR IZZATI AMIR RAMADAN, FARIHAH HANANI GHAZALI, SIONG JIUN WONG, MOHD ROSLAN SULAIMAN, TENGKU AZAM SHAH TENGKU MOHAMAD, MOHD KHAIRI HUSSAIN
& ENOCH KUMAR PERIMAL*
Department
of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang,
Selangor Darul Ehsan, Malaysia
Received: 17 May
2018/Accepted: 15 May 2019
ABSTRACT
Melicope ptelefolia is a medicinal plant from
the Rutaceae, also known as 'tenggek burung' in Malaysia.
Traditionally, natives ingest M. ptelefolia
to treat a wide range of illnesses. This study aimed to investigate
the effects of M. ptelefolia aqueous
extract (MPAE)
on compound action potentials (CAPs) in frog sciatic nerves and
its mechanism involving the opioid receptors. The effects of MPAE
on CAPs in frog sciatic nerves were examined
using the AD Instrument Nerve Chamber. The frog
sciatic nerves were dissected from the lumbar plexus to the knee
of the frog and placed in Ringer's solution. Three treatment groups
with different dosages (1, 3 and 10 mg/mL) of MPAE, including negative (vehicle) and
positive control group (3 mg/mL of morphine) were tested on the
frog sciatic nerves by placing them in a nerve organ chamber. Following
this, the involvement of opioid receptors in the effects of MPAE on
CAPs
was investigated by using naloxone hydrochloride as a non-selective
opioid receptor antagonist. Our results showed that the peak amplitudes
of CAPs
were significantly (p<0.001) reduced when treated with
MPAE
(3 and 10 mg/mL) in frog sciatic nerves. The MPAE-induced
CAPs
inhibition was reversed when pre-treated with naloxone, suggesting
the involvement of the opioidergic system.
These results indicated the modulatory action of MPAE on nerve conduction, which
may provide important leads in the development of new therapeutic
drugs through the involvement of opioid receptors.
Keywords: Compound
action potential; frog sciatic nerves; opioidergic;
opioid receptors; Melicope ptelefolia
ABSTRAK
Melicope ptelefolia adalah
sejenis tumbuhan
ubatan daripada Rutaceae,
juga dikenali sebagai
' tenggek burung'
di Malaysia. Secara tradisinya,
penduduk pribumi
menggunakanM. ptelefolia
untuk merawat pelbagai jenis penyakit. Kajian ini bertujuan untuk
mengkaji kesan
ekstrak akuasM. ptelefolia (MPAE) terhadap
potensi tindakan
sebatian (CAPs) dalam
saraf skiatik
katak dan mekanisme
yang melibatkan reseptor
opioid. Kesan MPAE pada
CAPs
saraf skiatik
dikaji menggunakan AD
Instrument Nerve Chamber. Saraf
skiatik katak
dibedah dari pleksus lumbar ke lutut katak
dan diletakkan
di dalam larutan Ringer. Sebanyak tiga kumpulan
rawatan dengan
dos yang berbeza (1, 3 dan 10 mg/mL)
MPAE,
dengan kumpulan
kawalan negatif (pembawa) dan positif
(3 mg/mL morfin) diuji
pada saraf skiatik
katak dengan
meletakkannya dalam ruang organ saraf. Berikutan itu, penglibatan reseptor opioid
dalam mekanisme MPAE menghalang CAP telah
dikaji dengan
menggunakan nalokson hidroklorida sebagai antagonis reseptor opioid yang
tidak memilih. Hasil kajian kami menunjukkan bahawa puncak amplitud potensi tindakan sebatian telah berkurang dengan ketara (p<0.001) apabila
dirawat dengan
ekstrak akuaM. ptelefolia (3 dan 10 mg/mL)
dalam saraf skiatik
katak. Perencatan
CAPs
yang disebabkan oleh
MPAE dibalikkan apabila saraf skiatik menerima
pra-rawatan dengan
nalokson mencadangkan penglibatan sistem opioidergik. Hasil kajian ini menunjukkan
tindakan modulasi
MPAE
pada pengaliran
saraf yang dapat
memberikan petunjuk yang penting dalam perkembangan
dadah terapeutik
baru melalui penglibatan
reseptor opioid.
Kata kunci: Melicope ptelefolia; opioidergik; potensi tindakan sebatian; reseptor opioid; saraf skiatik katak
REFERENCES
Al-Hasani, R. & Bruchas,
M.R. 2011. Molecular mechanisms of opioid receptor-dependent signaling and
behavior. Anesthesiology 115(6): 1363-1381.
Bogatov, N.M., Grigoryan, L.R., Ponetaeva, E.G. & Sinisyn,
A.S. 2014. Calculation of action potential propagation in nerve fiber. Progress
in Biophysics & Molecular Biology 114(3): 170-174.
Fields, H.L., Emson, P.C., Leigh, B.K.,
Gilbert, R.F. & Iversen, L.L. 1980. Multiple
opiate receptor sites on primary afferent fibres. Nature 284(5754): 351-353.
Gissen, A.J., Gugino, L.D., Datta, S., Miller, J. & Covino,
B.G. 1987. Effects of fentanyl and sufentanil on
peripheral mammalian nerves. Anesthesia & Analgesia 66(12): 1272-
1276.
Güven, M., Mert, T. & Günay,
I. 2005. Effects of tramadol on nerve action potentials in rat: Comparisons
with benzocaine and lidocaine. International Journal of Neuroscience 115(3):
339-349.
Jaffe, R.A.
& Rowe, M.A. 1996. A comparison of the local anesthetic effects of
meperidine, fentanyl, and sufentanil on dorsal root
axons. Anesthesia & Analgesia 83(4): 776-781.
Jurna, I. & Grossman, W.
1977. The effect of morphine on mammalian nerve fibres. European Journal of Pharmacology 44(4): 339-348.
Karim,
A., Shahrim, M., Nasouddin,
S.S., Othman, M., Mohd Adzahan,
N., Hussin, S.R. & Shaari,
K. 2011. Consumers knowledge and perception towards Melicope ptelefolia(Daun Tenggek Burung): A preliminary
qualitative study. International Food Research Journal 18(4): 1481-1488.
Katsuki, R., Fujita, T.,
Koga, A., Liu, T., Nakatsuka, T., Nakashima, M. & Kumamoto, E. 2006.
Tramadol, but not its major metabolite (mono - O - demethyl tramadol) depresses compound action potentials in frog sciatic nerves. British
Journal of Pharmacology 149(3): 319-327.
Kosugi, T., Mizuta, K.,
Fujita, T., Nakashima, M. & Kumamoto, E. 2010. High concentrations of dexmedetomidine inhibit compound action potentials in frog
sciatic nerves without alpha(2) adrenoceptor activation. British Journal of Pharmacology 160(7): 1662-1676.
Li,
J. 2015. Molecular regulators of nerve conduction - Lessons from inherited
neuropathies and rodent genetic models. Experimental Neurology 267:
209-218.
Mizuta,
K., Fujita, T., Nakatsuka, T. & Kumamoto, E. 2008. Inhibitory effects of
opioids on compound action potentials in frog sciatic nerves and their chemical
structures. Life Sciences 83(5): 198-207.
Pandey,
A.K. & Deshpande, S.B. 2012. Bisphenol A
depresses compound action potential of frog sciatic nerve in vitro involving Ca(2+)-dependent mechanisms. Neuroscience Letters 517(2):
128-132.
Sandkühler, J. 2000.
Learning and memory in pain pathways. Pain 88(2): 113-118.
Sulaiman, M.R., Mohd Padzil, A., Shaari, K., Khalid, S., Shaik Mossadeq, W.M., Mohamad, A.S., Ahmad, S., Akira, A., Israf, D. & Lajis, N. 2010. Antinociceptive activity of Melicope ptelefoliaethanolic extract in experimental animals. Journal of Biomedicine & Biotechnology 2010:
937642.
Uemura, Y., Fujita, T., Ohtsubo, S., Hirakawa, N., Sakaguchi, Y. & Kumamoto, E. 2014. Effects of various antiepileptics used to alleviate neuropathic pain on
compound action potential in frog sciatic nerves: Comparison with those of
local anesthetics. BioMed Research
International 2014: 5402389.
Yao,
L.H., Yu, H.M., Xiong, Q.P., Sun, W., Xu, Y.L., Meng, W., Li, Y.P., Liu, X.P. & Yuan, C.H. 2015. Cordycepin decreases compound action potential conduction
of frog sciatic nerve in vitro involving Ca(2+)-dependent
mechanisms. Neural Plasticity 2015: 927817.
*Corresponding
author; email: enoch@upm.edu.my
|