Sains Malaysiana 48(8)(2019):
1771–1776
http://dx.doi.org/10.17576/jsm-2019-4808-24
High Breakdown
Estimator for Dual Response Optimization in the Presence of Outliers
(Penganggar Penguraian Tinggi untuk Pengoptimuman Gerak Balas Dual dengan Kehadiran Titik Terpencil)
HABSHAH MIDI1*
& NASUHAR AB. AZIZ1,2
1Department
of Mathematics, Faculty of Science, Universiti Putra
Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
2Faculty
of Computer & Mathematical Sciences, Universiti Teknologi MARA,
Cawangan Kelantan, 18500 Machang, Kelantan
Darul Naim,
Malaysia
Received: 18 April
2017/Accepted: 30 May 2019
ABSTRACT
Nowadays, dual response
surface approach is used extensively, and it is known as one of
the powerful tools for robust design. General assumptions are the
data is normally distributed, and there is no outlier in the data
set. The traditional procedures for robust design is to establish
the process location and process scale models of the response variable
based on sample mean and sample variance, respectively. Meanwhile,
the ordinary least squares (OLS)
method is often used to estimate the parameters of the regression
response location and scale models. Nevertheless, many statistics
practitioners are unaware that these existing procedures are easily
influenced by outliers, and hence resulted in less accurate estimated
mean response obtained through non-resistant method. As an alternative,
the use of MM-location,
MM-scale
estimator, and MM regression estimator is proposed,
in order to overcome the shortcomings of the existing procedures.
This study employs a new penalty function optimization scheme to
determine the optimum factor settings for robust design variables.
The effectiveness of our proposed methods is confirmed by well-known
example and Monte Carlo simulations.
Keywords: Dual response
surface; MM-location and MM-scale; outliers; penalty
function optimization
ABSTRAK
Pada masa kini, pendekatan gerak balas permukaan dual telah digunakan secara meluas, dan ia juga dikenal pasti sebagai salah satu kaedah yang berkuasa untuk reka bentuk teguh. Secara umum, data diandaikan tertabur normal, dan tiada titik terpencil di dalam set
data. Prosedur tradisi bagi reka bentuk teguh ialah untuk membina model lokasi dan model skala proses berdasarkan min dan varians sampel. Sementara itu, kaedah kuasa dua terkecil biasa (OLS) sering digunakan untuk menganggar parameter bagi model sambutan regresi untuk proses min dan varians. Walau bagaimanapun, ramai pengamal statistik yang tidak menyedari bahawa prosedur sedia ada sangat senang dipengaruhi oleh titik terpencil dan mengakibatkan penganggaran sambutan min diperoleh daripada kaedah tidak teguh, kurang tepat. Sebagai alternatif, penggunaan kaedah pengganggar teguh MM-lokasi, MM-skala dan MM regresi dicadangkan untuk mengatasi kelemahan prosedur sedia ada. Kajian ini menggunakan skima baru untuk pengoptimunan fungsi penalti bagi menentukan tetapan faktor yang optimum untuk pemboleh ubah reka bentuk teguh. Keberkesanan kaedah baru yang dicadangkan disahkan dengan contoh terkenal dan simulasi Monte Carlo.
Kata kunci: Gerak balas permukaan dual; MM-lokasi dan MM-skala; pengoptimunan fungsi penalti; titik terpencil
REFERENCES
Baba,
I., Midi, H., Rana, S. & Ibragimov, G. 2015. An
alternative approach of dual response surface optimization based on penalty
function method. Mathematical Problems in Engineering 2015: 450131.
Bakar,
N.M. & Midi, H. 2015. Robust centering in the fixed effect panel data
model. Pakistan Journal of Statistics 31(1): 33-48.
Boylan,
G.L. & Cho, B.R. 2013. Comparative studies on the high-variability embedded
robust parameter design from the perspective of estimators. Computers &
Industrial Engineering 64(1): 442-452.
Copeland,
K.A. & Nelson, P.R. 1996. Dual response optimization via direct
function minimization. Journal of Quality Technology 28(3): 331-336.
Dehnad, K. 2012. Quality
Control, Robust Design, and the Taguchi Method. Springer Science
& Business Media.
Del
Castillo, E. & Montgomery, D.C. 1993. A nonlinear programming solution to
the dual response problem. Journal of Quality Technology 25(3): 199-204.
Ding,
R., Lin, D.K. & Wei, D. 2004. Dual-response surface optimization: A
weighted MSE approach. Quality Engineering 16(3): 377-385.
Easterling, R. 1985.
Discussion of off-line quality control, parameter design, and the Taguchi
Method. Journal of Quality Technology 17: 191-193.
Goethals,
P.L. & Cho, B.R. 2011. Solving the optimal process target problem using
response surface designs in heteroscedastic conditions. International
Journal of Production Research 49(12): 3455-3478.
Hettmansperger, T.P.
& McKean, J.W. 2010. Robust Nonparametric Statistical Methods. Boca
Raton: CRC Press.
Jeong, I.J., Kwang-Jae, K. & Chang, S.Y. 2005. Optimal weighting of
bias and variance in dual response surface optimization. Journal of Quality
Technology 37(3): 236-247.
Lee,
D.H. & Kim, K.J. 2012. Interactive weighting of bias and variance in dual
response surface optimization. Expert Systems with Applications 39(5):
5900-5906.
Lee,
S.B., Park, C. & Cho, B.R. 2007. Development of a highly efficient and
resistant robust design. International Journal of Production Research 45(1):
157-167.
Lin,
D.K. & Tu, W. 1995. Dual response surface
optimization. Journal of Quality Technology 27(1): 34-39.
Ma,
Y. & Tian, T. 2009. Optimal weighted approach in dual-response surface
optimization. 2009 International Conference on Management and Service
Science DOI: 10.1109/ icmss.2009.5305063.
Myers,
R.H. & Carter, W.H. 1973. Response surface techniques for dual response
systems. Technometrics 15(2): 301-317.
Park,
C. & Cho, B.R. 2003. Development of robust design under contaminated and
non-normal data. Quality Engineering 15(3): 463-469.
Park,
C. & Leeds, M. 2016. A highly efficient robust design under data
contamination. Computers & Industrial Engineering 93: 131-142.
Riazoshams, H., Midi, H.B.
& Sharipov, O.S. 2010. The performance of robust
two-stage estimator in nonlinear regression with autocorrelated error. Communications in Statistics-Simulation and Computation 39(6):
1251-1268.
Tukey,
J.W. 1960. A survey of sampling from contaminated distributions. Contributions
to Probability and Statistics 2: 448-485.
Velazco, E.E., Bendell, A., Disney, J. & Pridmore,
W.A. 1991. Taguchi Methods: Applications in world industry. Interfaces 21(2):
99-101.
Vining,
G. & Myers, R. 1990. Combining Taguchi and response surface philosophies-A
dual response approach. Journal of Quality Technology 22(1): 38-45.
Yohai, V.J. 1987. High
breakdown-point and high efficiency robust estimates for regression. The
Annals of Statistics 15(2): 642-656.
*Corresponding
author; email: habshahmidi@gmail.com
|