Sains Malaysiana 48(9)(2019):
2041–2049
http://dx.doi.org/10.17576/jsm-2019-4809-25
An Enhanced Safrole
Sensing Performance of a Polyacrylonitrile Nanofiber-Based-QCM Sensor by
Overlaying with Chitosan
(Peningkatan Prestasi
Mengesan Safrola bagi Poliakrilonitril Nanogentian-Berasaskan Sensor
QCM yang Disalut dengan Kitosan)
ADITYA RIANJANU1, KUWAT TRIYANA1,2*, NOVALIA NURBAITI1, SITI ASTUTI HASANAH1, AHMAD KUSUMAATMAJA1 & ROTO ROTO3
1Department of Physics, Faculty
of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara BLS
21, Yogyakarta 55281, Indonesia
2Institute of Halal
Industry and System (IHIS), Universitas Gadjah Mada, Sekip Utara, Yogyakarta
55281, Indonesia
3Department of Chemistry,
Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip
Utara BLS 21, Yogyakarta 55281, Indonesia
Received:
29 March 2019/Accepted: 20 July 2019
ABSTRACT
We report on a method
to enhance the sensing performance of polyacrylonitrile (PAN)
nanofiber-based QCM sensor overlaid with chitosan. The PAN nanofibers were deposited on the QCM sensing
surface by electrospinning technique followed by overlay with chitosan by a
drop-casting method. The Fourier transform infrared (FTIR)
spectra confirm that chitosan covers the PAN nanofibers. The SEM images
show the average diameter of the produced PAN nanofibers
was 236 nm, and it increased to 283 nm after overlay with chitosan. The
modified QCM sensor has the sensitivity of 18.7 Hz mg-1 L,
which is better than that of PAN nanofiber alone of 4.5 Hz
mg-1 L. It is an increase nearly 5 times. The analytical
parameters of the limit of detection (LOD), sensitivity, a time
constant, and stability improved after the PAN nanofiber
sensor was overlaid with chitosan. The amine groups present in chitosan
interact effectively with safrole, thus increase the sensing response. The
proposed device is robust, inexpensive, and convenient for detecting safrole,
and can be used as an alternative to those of classical instrumental methods
for the analysis of safrole as a drug precursor.
Keywords: Chitosan;
ecstasy; quartz crystal microbalance; safrole; vapor sensor
ABSTRAK
Kajian ini melaporkan
tentang kaedah untuk meningkatkan prestasi pengesanan poliakrilonitril (PAN)
berasaskan sensor gentian nano QCM yang disaluti dengan
kitosan. PAN nanofiber diendap pada permukaan pengesan QCM oleh
teknik putaran elektro diikuti dengan salutan kitosan melalui kaedah
drop-pemutus. Spektrum transformasi Fourier inframerah (FTIR)
mengesahkan kitosan menutup gentian nano PAN. Imej SEM menunjukkan
diameter purata gentian nano PAN yang dihasilkan adalah 236
nm dan ia meningkat kepada 283 nm selepas bertindih dengan kitosan. Sensor QCM terubah
suai mempunyai kesensitifan 18.7 L mg-1 Hz, lebih baik daripada
gentian nano PAN sahaja iaitu 4.5 Hz mg-1 L.
Ini merupakan peningkatan hampir 5 kali ganda. Analisis parameter had
pengesanan (LOD), kesensitifan, pemalar masa dan kestabilan bertambah
baik selepas sensor gentian nano PAN disaluti dengan kitosan. Golongan
amina yang hadir dalam kitosan berinteraksi secara berkesan dengan safrola,
sekaligus meningkatkan respons pengesanan. Peranti cadangan ini teguh, murah
dan mudah untuk mengesan safrola dan boleh digunakan sebagai alternatif kepada
metod instrumen klasik untuk menganalisis safrola sebagai pelopor dadah.
Kata kunci: Ekstasi; kitosan; kristal kuarza mikroneraca; safrola;
wap sensor
REFERENCES
Aba, L., Yusuf, Y., Mitrayana, Siswanta, D., Junaidi. &
Triyana, K. 2014. Sensitivity improvement of ammonia gas sensor based on poly
(3, 4-ethylenedioxythiophene): Poly (strenesulfonate) by employing doping of
bromocresol green. Journal of Nanotechnology 2014: 864274.
Ayad, M.M. & Minisy, I.M. 2016. Detection and kinetics of
methylamine on chitosan film coated quartz crystal microbalance electrode. Progress
in Organic Coatings 100: 76-80.
Ayad, M.M., Salahuddin, N.A., Minisy, I.M. & Amer, W.A. 2014.
Chitosan/polyaniline nanofibers coating on the quartz crystal microbalance
electrode for gas sensing. Sensors and Actuators B: Chemical 202:
144-153.
Chotimah, C., Rianjanu, A., Winardianto, B., Munir, M., Kartini,
I. & Triyana, K. 2016. Electrical conductivity improvement of polyvinyl
alcohol nanofiber by solvent vapour treatment. International Journal on
Advanced Science, Engineering and Information Technology 6(5): 675.
Cipriani, E., Zanetti, M., Bracco, P., Brunella, V., Luda, M.P.
& Costa, L. 2016. Crosslinking and carbonization processes in PAN films and
nanofibers. Polymer Degradation and Stability 123: 178-188.
Ding, B., Wang, M., Wang, X., Yu, J. & Sun, G. 2010.
Electrospun nanomaterials for ultrasensitive sensors. Materials Today 13(11):
16-27.
Evyapan, M., Kadem, B., Basova, T.V., Yushina, I.V. & Hassan,
A.K. 2016. Study of the sensor response of spun metal phthalocyanine films to
volatile organic vapors using surface plasmon resonance. Sensors Actuators B
Chem. 236: 605-613.
Hackner, A., Legner, W., Müller, G., Biavardi, E., Dalcanale, E.,
Zampolli, S., Elmi, I. & Cardinali, G.C. 2013. Surface ionization detection
of amine containing drugs. Sensors and Actuators B: Chemical 185:
771-776.
He, K., Wang, X., Meng, X., Zheng, H. & Suye, S.I. 2014.
Amperometric determination of hydroquinone and catechol on gold electrode
modified by direct electrodeposition of poly(3,4-ethylenedioxythiophene). Sensors
and Actuators B: Chemical 193: 212-219.
Hernández, P.T., Naik, A.J.T., Newton, E.J., Hailes, S.M.V. &
Parkin, I.P. 2014. Assessing the potential of metal oxide semiconducting gas
sensors for illicit drug detection markers. Journal of Materials Chemistry A 2(23): 8952-8960.
Hidayat, S.N., Julian, T., Rianjanu, A., Kusumaatmadja, A.,
Triyana, K. & Roto, R. 2017. Quartz crystal microbalance coated by PAN
nanofibers and PEDOT: PSS for humidity sensor. International Seminar on
Sensors, Instrumentation, Measurement and Metrology (ISSIMM). pp. 119-123.
Honeychurch, K. 2016. Review: The application of liquid
chromatography electrochemical detection for the determination of drugs of
abuse. Separations 3(4): 28. doi:10.3390/separations3040028.
Huang, W., Wang, X., Jia, Y., Li, X., Zhu, Z., Li, Y., Si, Y.,
Ding, B., Wang, X. & Yu, J. 2013. Highly sensitive formaldehyde sensors
based on polyvinylamine modified polyacrylonitrile nanofibers. RSC Advances 3(45):
22994.
Jia, Y., Yu, H., Cai, J., Li, Z. & Dong, F. 2017. Explore
on the quantitative analysis of specific surface area on sensitivity of
polyacrylic acid-based QCM ammonia sensor. Sensors and Actuators B: Chemical 243: 1042-1045.
Jia,
Y., Yu, H., Zhang, Y., Dong, F. & Li, Z. 2016. Cellulose acetate nanofibers
coated layer-by-layer with polyethylenimine and graphene oxide on a quartz
crystal microbalance for use as a highly sensitive ammonia sensor. Colloids
Surfaces B Biointerfaces 148: 263-269.
Jia,
Y., Yan, C., Yu, H., Chen, L. & Dong, F. 2014. One-step fabrication of
ammonia sensor by electrospinning PS-b- PMA nanofibers on quartz crystal
microbalance. Sensors and Actuators B: Chemical 203: 459-464.
Julian,
T., Rianjanu, A., Hidayat, S.N., Kusumaatmaja, A., Roto, R. & Triyana, K.
2019. Quartz crystal microbalance coated with PEDOT-PSS/PVA nanofiber for a
high-performance humidity sensor. Journal of Sensors and Sensor Systems 8(2):
243-250.
Kakida,
H. & Tashiro, K. 1997. Mechanism and kinetics of stabilization reaction of
polyacrylonitrile and related copolymers II. Relationships between isothermal
DSC thermograms and FT-IR spectral changes of polyacrylonitrile in comparison
with the case of acrylonitrile/methacrylic acid. Polymer Journal 29(4):
353-357.
Kim,
S.S. & Lee, J. 2014. Antibacterial activity of polyacrylonitrile-chitosan
electrospun nanofibers. Carbohydrate Polymers 102(1): 231-237.
Li,
J., Su, S., Zhou, L., Kundrát, V., Abbot, A.M., Mushtaq, F., Ouyang, D., James,
D., Roberts, D. & Ye, H. 2013. Carbon nanowalls grown by microwave plasma
enhanced chemical vapor deposition during the carbonization of
polyacrylonitrile fibers. Journal of Applied Physics 113(2): 024313.
Long,
G.L. & Winefordner, J.D. 1983. Limit of detection: A closer look at the
IUPAC definition. Analytical Chemistry 55(7): 712A-724A.
Lu,
H.L., Lu, C.J., Tian, W.C. & Sheen, H.J. 2015. A vapor response mechanism
study of surface-modified single-walled carbon nanotubes coated chemiresistors
and quartz crystal microbalance sensor arrays. Talanta 131: 467-474.
Mahendra,
B., Nugroho, F. & Yusuf, Y. 2018. Low-frequency electrohydrodynamic
convection patterns in nematic liquid crystal aligned using parallel-oriented
nanofiber. Japanese Journal of Applied Physics 57(2): 021701.
Pinalli,
R., Barboza, T., Bianchi, F., Massera, C., Ugozzoli, F. & Dalcanale, E.
2013. Detection of amphetamine precursors with quinoxaline-bridged cavitands. Supramolecular
Chemistry 25(9-11): 682-687.
Portaccio,
M., Menale, C., Diano, N., Serri, C., Mita, D.G. & Lepore, M. 2015.
Monitoring production process of cisplatin-loaded PLGA nanoparticles by FT-IR
microspectroscopy and univariate data analysis. Journal of Applied Polymer
Science 132(3): 1-9. https://doi.org/10.1002/app.41305.
Rianjanu,
A., Nugroho, D.B., Kusumaatmaja, A., Roto, R. & Triyana, K. 2019a. A study
of quartz crystal microbalance modified with polyvinyl acetate nanofiber to
differentiate short-chain alcohol isomers. Sensing and Bio-Sensing Research 25:
100294.
Rianjanu,
A., Hasanah, S.A., Nugroho, D.B., Kusumaatmaja, A., Roto, R. & Triyana, K.
2019b. Polyvinyl acetate film-based quartz crystal microbalance for the
detection of benzene, toluene, and xylene vapors in air. Chemosensors 7(2):
20. doi:10.3390/chemosensors7020020.
Rianjanu,
A., Roto, R., Julian, T., Hidayat, S.N., Kusumaatmaja, A., Suyono, E.A. &
Triyana, K. 2018a. Polyacrylonitrile nanofiber-based quartz crystal
microbalance for sensitive detection of safrole. Sensors 18(4): 1150.
Rianjanu,
A., Julian, T., Hidayat, S.N., Suyono, E.A., Kusumaatmaja, A. & Triyana, K.
2018b. Polyacrylonitrile nanofiber as polar solvent N,N-dimethyl formamide
sensor based on quartz crystal microbalance technique. Journal of Physics:
Conference Series 1011(1): 012067.
Rianjanu,
A., Kusumaatmaja, A., Suyono, E.A. & Triyana, K. 2018c. Solvent vapor
treatment improves mechanical strength of electrospun polyvinyl alcohol
nanofibers. Heliyon 4(4): e00592.
Rianjanu,
A., Hidayat, S.N., Julian, T., Suyono, E.A., Kusumaatmaja, A. & Triyana, K.
2018d. Swelling behavior in solvent vapor sensing based on Quartz Crystal
Microbalance (QCM) Coated Polyacrylonitrile (PAN) nanofiber. IOP Conference
Series: Materials Science and Engineering 367: 012020.
Saito,
K., Saito, R., Kikuchi, Y., Iwasaki, Y., Ito, R. & Nakazawa, H. 2011.
Analysis of drugs of abuse in biological specimens. Journal of Health
Science 57(6): 472-487.
Sauerbrey,
G. 1959. Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur
Mikrowägung. Zeitschrift für Phys. 155(2): 206-222.
Singer,
M. 2008. Drugs and development: The global impact of drug use and trafficking
on social and economic development. International Journal of Drug Policy 19(6):
467-478.
Siow,
K.S., Britcher, L., Kumar, S. & Griesser, H.J. 2019. QCM-D and XPS study of
protein adsorption on plasma polymers with sulfonate and phosphonate surface
groups. Colloids Surfaces B Biointerfaces 173(April 2018): 447-453.
Sun,
Y.F., Liu, S.B., Meng, F.L., Liu, J.Y., Jin, Z., Kong, L.T. & Liu, J.H.
2012. metal oxide nanostructures and their gas sensing properties: A review. Sensors 12(12): 2610-2631.
Triyana,
K., Sembiring, A., Rianjanu, A., Hidayat, S., Riowirawan, R., Julian, T.,
Kusumaatmaja, A., Santoso, I. & Roto, R. 2018. Chitosan-based quartz
crystal microbalance for alcohol sensing. Electronics 7(9): 181.
United
Nations Office on Drugs and Crime. 2017. Global Overview of Drug
Demand and Supply, Vienna. https://www. unodc.org/wdr2017/field/Booklet_2_HEALTH.pdf.
Wang,
J., He, E., Liu, X., Yu, L., Wang, H., Zhang, R. & Zhang, H. 2017. High
performance hydrazine vapor sensor based on redox mechanism of twisted perylene
diimide derivative with lower reduction potential. Sensors and Actuators B:
Chemical 239: 898-905.
Wang,
N., Wang, X., Jia, Y., Li, X., Yu, J. & Ding, B. 2014. Electrospun
nanofibrous chitosan membranes modified with polyethyleneimine for formaldehyde
detection. Carbohydrate Polymers 108(1): 192-199.
Wang,
S.Y., Ma, J.Y., Li, Z.J., Su, H.Q., Alkurd, N.R., Zhou, W.L., Wang, L., Du, B.,
Tang, Y.L., Ao, D.Y., Zhang, S.C., Yu, Q.K. & Zu, X.T. 2015. Surface
acoustic wave ammonia sensor based on ZnO/SiO2 composite film. Journal of
Hazardous Materials 285: 368-374.
Xue,
Y., Liu, J., Lian, F. & Liang, J. 2013. Effect of the oxygen-induced
modification of polyacrylonitrile fibers during thermal-oxidative stabilization
on the radial microcrystalline structure of the resulting carbon fibers. Polymer
Degradation and Stability 98(11): 2259-2267.
Zhang,
D., Wang, D., Li, P., Zhou, X., Zong, X. & Dong, G. 2018. Facile
fabrication of high-performance QCM humidity sensor
based on layer-by-layer self-assembled polyaniline/ graphene oxide
nanocomposite film. Sensors and Actuators B: Chemical 255: 1869-1877.
Zhang, K., Fan, G., Hu,
R. & Li, G. 2015. Enhanced dibutyl phthalate sensing performance of a
quartz crystal microbalance coated with Au-decorated ZnO porous microspheres. Sensors 15(9): 21153-21168.
Zhang, K., Hu, R., Fan,
G. & Li, G. 2017. Graphene oxide/ chitosan nanocomposite coated quartz
crystal microbalance sensor for detection of amine vapors. Sensors and
Actuators B: Chemical 243: 721-730.
*Corresponding
author; email: triyana@ugm.ac.id
|