Sains Malaysiana 48(9)(2019): 2041–2049

http://dx.doi.org/10.17576/jsm-2019-4809-25

 

An Enhanced Safrole Sensing Performance of a Polyacrylonitrile Nanofiber-Based-QCM Sensor by Overlaying with Chitosan

(Peningkatan Prestasi Mengesan Safrola bagi Poliakrilonitril Nanogentian-Berasaskan Sensor QCM yang Disalut dengan Kitosan)

ADITYA RIANJANU1, KUWAT TRIYANA1,2*, NOVALIA NURBAITI1, SITI ASTUTI HASANAH1, AHMAD KUSUMAATMAJA1 & ROTO ROTO3

 

1Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara BLS 21, Yogyakarta 55281, Indonesia

 

2Institute of Halal Industry and System (IHIS), Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia

 

3Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara BLS 21, Yogyakarta 55281, Indonesia

 

Received: 29 March 2019/Accepted: 20 July 2019

 

ABSTRACT

We report on a method to enhance the sensing performance of polyacrylonitrile (PAN) nanofiber-based QCM sensor overlaid with chitosan. The PAN nanofibers were deposited on the QCM sensing surface by electrospinning technique followed by overlay with chitosan by a drop-casting method. The Fourier transform infrared (FTIR) spectra confirm that chitosan covers the PAN nanofibers. The SEM images show the average diameter of the produced PAN nanofibers was 236 nm, and it increased to 283 nm after overlay with chitosan. The modified QCM sensor has the sensitivity of 18.7 Hz mg-1 L, which is better than that of PAN nanofiber alone of 4.5 Hz mg-1 L. It is an increase nearly 5 times. The analytical parameters of the limit of detection (LOD), sensitivity, a time constant, and stability improved after the PAN nanofiber sensor was overlaid with chitosan. The amine groups present in chitosan interact effectively with safrole, thus increase the sensing response. The proposed device is robust, inexpensive, and convenient for detecting safrole, and can be used as an alternative to those of classical instrumental methods for the analysis of safrole as a drug precursor.

 

Keywords: Chitosan; ecstasy; quartz crystal microbalance; safrole; vapor sensor

 

ABSTRAK

Kajian ini melaporkan tentang kaedah untuk meningkatkan prestasi pengesanan poliakrilonitril (PAN) berasaskan sensor gentian nano QCM yang disaluti dengan kitosan. PAN nanofiber diendap pada permukaan pengesan QCM oleh teknik putaran elektro diikuti dengan salutan kitosan melalui kaedah drop-pemutus. Spektrum transformasi Fourier inframerah (FTIR) mengesahkan kitosan menutup gentian nano PAN. Imej SEM menunjukkan diameter purata gentian nano PAN yang dihasilkan adalah 236 nm dan ia meningkat kepada 283 nm selepas bertindih dengan kitosan. Sensor QCM terubah suai mempunyai kesensitifan 18.7 L mg-1 Hz, lebih baik daripada gentian nano PAN sahaja iaitu 4.5 Hz mg-1 L. Ini merupakan peningkatan hampir 5 kali ganda. Analisis parameter had pengesanan (LOD), kesensitifan, pemalar masa dan kestabilan bertambah baik selepas sensor gentian nano PAN disaluti dengan kitosan. Golongan amina yang hadir dalam kitosan berinteraksi secara berkesan dengan safrola, sekaligus meningkatkan respons pengesanan. Peranti cadangan ini teguh, murah dan mudah untuk mengesan safrola dan boleh digunakan sebagai alternatif kepada metod instrumen klasik untuk menganalisis safrola sebagai pelopor dadah.

 

Kata kunci: Ekstasi; kitosan; kristal kuarza mikroneraca; safrola; wap sensor

REFERENCES

Aba, L., Yusuf, Y., Mitrayana, Siswanta, D., Junaidi. & Triyana, K. 2014. Sensitivity improvement of ammonia gas sensor based on poly (3, 4-ethylenedioxythiophene): Poly (strenesulfonate) by employing doping of bromocresol green. Journal of Nanotechnology 2014: 864274.

Ayad, M.M. & Minisy, I.M. 2016. Detection and kinetics of methylamine on chitosan film coated quartz crystal microbalance electrode. Progress in Organic Coatings 100: 76-80.

Ayad, M.M., Salahuddin, N.A., Minisy, I.M. & Amer, W.A. 2014. Chitosan/polyaniline nanofibers coating on the quartz crystal microbalance electrode for gas sensing. Sensors and Actuators B: Chemical 202: 144-153.

Chotimah, C., Rianjanu, A., Winardianto, B., Munir, M., Kartini, I. & Triyana, K. 2016. Electrical conductivity improvement of polyvinyl alcohol nanofiber by solvent vapour treatment. International Journal on Advanced Science, Engineering and Information Technology 6(5): 675.

Cipriani, E., Zanetti, M., Bracco, P., Brunella, V., Luda, M.P. & Costa, L. 2016. Crosslinking and carbonization processes in PAN films and nanofibers. Polymer Degradation and Stability 123: 178-188.

Ding, B., Wang, M., Wang, X., Yu, J. & Sun, G. 2010. Electrospun nanomaterials for ultrasensitive sensors. Materials Today 13(11): 16-27.

Evyapan, M., Kadem, B., Basova, T.V., Yushina, I.V. & Hassan, A.K. 2016. Study of the sensor response of spun metal phthalocyanine films to volatile organic vapors using surface plasmon resonance. Sensors Actuators B Chem. 236: 605-613.

Hackner, A., Legner, W., Müller, G., Biavardi, E., Dalcanale, E., Zampolli, S., Elmi, I. & Cardinali, G.C. 2013. Surface ionization detection of amine containing drugs. Sensors and Actuators B: Chemical 185: 771-776.

He, K., Wang, X., Meng, X., Zheng, H. & Suye, S.I. 2014. Amperometric determination of hydroquinone and catechol on gold electrode modified by direct electrodeposition of poly(3,4-ethylenedioxythiophene). Sensors and Actuators B: Chemical 193: 212-219.

Hernández, P.T., Naik, A.J.T., Newton, E.J., Hailes, S.M.V. & Parkin, I.P. 2014. Assessing the potential of metal oxide semiconducting gas sensors for illicit drug detection markers. Journal of Materials Chemistry A 2(23): 8952-8960.

Hidayat, S.N., Julian, T., Rianjanu, A., Kusumaatmadja, A., Triyana, K. & Roto, R. 2017. Quartz crystal microbalance coated by PAN nanofibers and PEDOT: PSS for humidity sensor. International Seminar on Sensors, Instrumentation, Measurement and Metrology (ISSIMM). pp. 119-123.

Honeychurch, K. 2016. Review: The application of liquid chromatography electrochemical detection for the determination of drugs of abuse. Separations 3(4): 28. doi:10.3390/separations3040028.

Huang, W., Wang, X., Jia, Y., Li, X., Zhu, Z., Li, Y., Si, Y., Ding, B., Wang, X. & Yu, J. 2013. Highly sensitive formaldehyde sensors based on polyvinylamine modified polyacrylonitrile nanofibers. RSC Advances 3(45): 22994.

Jia, Y., Yu, H., Cai, J., Li, Z. & Dong, F. 2017. Explore on the quantitative analysis of specific surface area on sensitivity of polyacrylic acid-based QCM ammonia sensor. Sensors and Actuators B: Chemical 243: 1042-1045.

Jia, Y., Yu, H., Zhang, Y., Dong, F. & Li, Z. 2016. Cellulose acetate nanofibers coated layer-by-layer with polyethylenimine and graphene oxide on a quartz crystal microbalance for use as a highly sensitive ammonia sensor. Colloids Surfaces B Biointerfaces 148: 263-269.

Jia, Y., Yan, C., Yu, H., Chen, L. & Dong, F. 2014. One-step fabrication of ammonia sensor by electrospinning PS-b- PMA nanofibers on quartz crystal microbalance. Sensors and Actuators B: Chemical 203: 459-464.

Julian, T., Rianjanu, A., Hidayat, S.N., Kusumaatmaja, A., Roto, R. & Triyana, K. 2019. Quartz crystal microbalance coated with PEDOT-PSS/PVA nanofiber for a high-performance humidity sensor. Journal of Sensors and Sensor Systems 8(2): 243-250.

Kakida, H. & Tashiro, K. 1997. Mechanism and kinetics of stabilization reaction of polyacrylonitrile and related copolymers II. Relationships between isothermal DSC thermograms and FT-IR spectral changes of polyacrylonitrile in comparison with the case of acrylonitrile/methacrylic acid. Polymer Journal 29(4): 353-357.

Kim, S.S. & Lee, J. 2014. Antibacterial activity of polyacrylonitrile-chitosan electrospun nanofibers. Carbohydrate Polymers 102(1): 231-237.

Li, J., Su, S., Zhou, L., Kundrát, V., Abbot, A.M., Mushtaq, F., Ouyang, D., James, D., Roberts, D. & Ye, H. 2013. Carbon nanowalls grown by microwave plasma enhanced chemical vapor deposition during the carbonization of polyacrylonitrile fibers. Journal of Applied Physics 113(2): 024313.

Long, G.L. & Winefordner, J.D. 1983. Limit of detection: A closer look at the IUPAC definition. Analytical Chemistry 55(7): 712A-724A.

Lu, H.L., Lu, C.J., Tian, W.C. & Sheen, H.J. 2015. A vapor response mechanism study of surface-modified single-walled carbon nanotubes coated chemiresistors and quartz crystal microbalance sensor arrays. Talanta 131: 467-474.

Mahendra, B., Nugroho, F. & Yusuf, Y. 2018. Low-frequency electrohydrodynamic convection patterns in nematic liquid crystal aligned using parallel-oriented nanofiber. Japanese Journal of Applied Physics 57(2): 021701.

Pinalli, R., Barboza, T., Bianchi, F., Massera, C., Ugozzoli, F. & Dalcanale, E. 2013. Detection of amphetamine precursors with quinoxaline-bridged cavitands. Supramolecular Chemistry 25(9-11): 682-687.

Portaccio, M., Menale, C., Diano, N., Serri, C., Mita, D.G. & Lepore, M. 2015. Monitoring production process of cisplatin-loaded PLGA nanoparticles by FT-IR microspectroscopy and univariate data analysis. Journal of Applied Polymer Science 132(3): 1-9. https://doi.org/10.1002/app.41305.

Rianjanu, A., Nugroho, D.B., Kusumaatmaja, A., Roto, R. & Triyana, K. 2019a. A study of quartz crystal microbalance modified with polyvinyl acetate nanofiber to differentiate short-chain alcohol isomers. Sensing and Bio-Sensing Research 25: 100294.

Rianjanu, A., Hasanah, S.A., Nugroho, D.B., Kusumaatmaja, A., Roto, R. & Triyana, K. 2019b. Polyvinyl acetate film-based quartz crystal microbalance for the detection of benzene, toluene, and xylene vapors in air. Chemosensors 7(2): 20. doi:10.3390/chemosensors7020020.

Rianjanu, A., Roto, R., Julian, T., Hidayat, S.N., Kusumaatmaja, A., Suyono, E.A. & Triyana, K. 2018a. Polyacrylonitrile nanofiber-based quartz crystal microbalance for sensitive detection of safrole. Sensors 18(4): 1150.

Rianjanu, A., Julian, T., Hidayat, S.N., Suyono, E.A., Kusumaatmaja, A. & Triyana, K. 2018b. Polyacrylonitrile nanofiber as polar solvent N,N-dimethyl formamide sensor based on quartz crystal microbalance technique. Journal of Physics: Conference Series 1011(1): 012067.

Rianjanu, A., Kusumaatmaja, A., Suyono, E.A. & Triyana, K. 2018c. Solvent vapor treatment improves mechanical strength of electrospun polyvinyl alcohol nanofibers. Heliyon 4(4): e00592.

Rianjanu, A., Hidayat, S.N., Julian, T., Suyono, E.A., Kusumaatmaja, A. & Triyana, K. 2018d. Swelling behavior in solvent vapor sensing based on Quartz Crystal Microbalance (QCM) Coated Polyacrylonitrile (PAN) nanofiber. IOP Conference Series: Materials Science and Engineering 367: 012020.

Saito, K., Saito, R., Kikuchi, Y., Iwasaki, Y., Ito, R. & Nakazawa, H. 2011. Analysis of drugs of abuse in biological specimens. Journal of Health Science 57(6): 472-487.

Sauerbrey, G. 1959. Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Zeitschrift für Phys. 155(2): 206-222.

Singer, M. 2008. Drugs and development: The global impact of drug use and trafficking on social and economic development. International Journal of Drug Policy 19(6): 467-478.

Siow, K.S., Britcher, L., Kumar, S. & Griesser, H.J. 2019. QCM-D and XPS study of protein adsorption on plasma polymers with sulfonate and phosphonate surface groups. Colloids Surfaces B Biointerfaces 173(April 2018): 447-453.

Sun, Y.F., Liu, S.B., Meng, F.L., Liu, J.Y., Jin, Z., Kong, L.T. & Liu, J.H. 2012. metal oxide nanostructures and their gas sensing properties: A review. Sensors 12(12): 2610-2631.

Triyana, K., Sembiring, A., Rianjanu, A., Hidayat, S., Riowirawan, R., Julian, T., Kusumaatmaja, A., Santoso, I. & Roto, R. 2018. Chitosan-based quartz crystal microbalance for alcohol sensing. Electronics 7(9): 181.

United Nations Office on Drugs and Crime. 2017. Global Overview of Drug Demand and Supply, Vienna. https://www. unodc.org/wdr2017/field/Booklet_2_HEALTH.pdf.

Wang, J., He, E., Liu, X., Yu, L., Wang, H., Zhang, R. & Zhang, H. 2017. High performance hydrazine vapor sensor based on redox mechanism of twisted perylene diimide derivative with lower reduction potential. Sensors and Actuators B: Chemical 239: 898-905.

Wang, N., Wang, X., Jia, Y., Li, X., Yu, J. & Ding, B. 2014. Electrospun nanofibrous chitosan membranes modified with polyethyleneimine for formaldehyde detection. Carbohydrate Polymers 108(1): 192-199.

Wang, S.Y., Ma, J.Y., Li, Z.J., Su, H.Q., Alkurd, N.R., Zhou, W.L., Wang, L., Du, B., Tang, Y.L., Ao, D.Y., Zhang, S.C., Yu, Q.K. & Zu, X.T. 2015. Surface acoustic wave ammonia sensor based on ZnO/SiO2 composite film. Journal of Hazardous Materials 285: 368-374.

Xue, Y., Liu, J., Lian, F. & Liang, J. 2013. Effect of the oxygen-induced modification of polyacrylonitrile fibers during thermal-oxidative stabilization on the radial microcrystalline structure of the resulting carbon fibers. Polymer Degradation and Stability 98(11): 2259-2267.

Zhang, D., Wang, D., Li, P., Zhou, X., Zong, X. & Dong, G. 2018. Facile fabrication of high-performance QCM humidity sensor based on layer-by-layer self-assembled polyaniline/ graphene oxide nanocomposite film. Sensors and Actuators B: Chemical 255: 1869-1877.

Zhang, K., Fan, G., Hu, R. & Li, G. 2015. Enhanced dibutyl phthalate sensing performance of a quartz crystal microbalance coated with Au-decorated ZnO porous microspheres. Sensors 15(9): 21153-21168.

Zhang, K., Hu, R., Fan, G. & Li, G. 2017. Graphene oxide/ chitosan nanocomposite coated quartz crystal microbalance sensor for detection of amine vapors. Sensors and Actuators B: Chemical 243: 721-730.

 

*Corresponding author; email: triyana@ugm.ac.id

 

 

 

 

previous