Sains Malaysiana 49(12)(2020):
2927-2940
http://dx.doi.org/10.17576/jsm-2020-4912-05
Mechanical Impact in Disk Mill for
Producing Controlled Rice Husk Particle Size by Changing Impactor Shapes and
Disk Rotation Speeds
(Kesan Mekanikal di Kilang Cakera untuk Menghasilkan Saiz Zarah Sekam Padi Terkawal dengan Mengubah Bentuk Impak dan Kelajuan Putaran Cakera)
ASEP
BAYU DANI NANDIYANTO1*, RISTI RAGADHITA1, AJENG
SUKMAFITRI1, MUHAMMAD ROIL BILAD2, MUHAMMAD AZIZ3 & JUMRIL YUNAS4
1Departemen Kimia, Universitas Pendidikan Indonesia, Bandung, Indonesia
2Chemical Engineering Department, Universiti Teknologi Petronas, 31750 Tronoh,
Perak Darul Ridzuan, Malaysia
3Institute of Industrial Science, The University of
Tokyo, Tokyo, 153-8505, Japan
4Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
Received:
20 July 2020/Accepted: 8 August 2020
ABSTRACT
The purpose of this study was to evaluate regulation of mechanical
impact (i.e. impactor sizes and shapes) on triangle, cylinder, and cube as well
as disk rotation speed (from 600 to 1500 rpm) in disk mill for controlling
size-reduction process. As a model of size-reduced material, rice husk was
selected. The study was done by evaluating the final milling product size,
which was completed by the measurement of energy impact during the milling
process. Experimental results showed that the product size was controllable in
the range of between 50 and 1000 μm. The
impactor sizes and shapes influenced the contact diameter and area of impactor
for making more materials being collided, whereas disk rotation speed led to
giving more collision number (between rice husk and impactor) and increasing
impact from the collision (due to less time contact during collision). This
study provides an important information, which can be further generalized in
the use of milling process as a tool for materials size-reduction and mechanochemical process.
Keywords: Disk mill;
education; impactor shapes; mechanical impact; milling process; particle size
distribution
ABSTRACT
Tujuan kajian ini adalah untuk menilai peraturan ketetapan impak mekanikal (seperti ukuran dan bentuk impak) dalam segitiga, silinder dan kubus serta kelajuan putaran cakera (dari 600 hingga 1500 rpm) di kilang cakera untuk mengawal proses penurunan saiz. Sebagai model bahan saiz terkurang, sekam padi telah dipilih. Kajian ini dijalankan dengan menilai ukuran akhir produk yang dikisar dan disempurnakan dengan pengukuran kesan tenaga hentaman semasa proses pengisaran. Keputusan uji kaji menunjukkan bahawa ukuran produk dapat dikawal dalam lingkungan 50-1000 μm. Saiz dan bentuk impak mempengaruhi diameter sentuhan dan luas kawasan pemukul kerana lebih banyak bahan berlanggar, sedangkan kelajuan putaran cakera menyebabkan lebih banyak bilangan pelanggaran (antara sekam padi dan impak) dan peningkatan jumlah impak daripada pelanggaran (disebabkan masa sentuhan yang singkat daripada pelanggaran). Kajian ini menyediakan maklumat yang penting dan dapat dikaji dengan lebih lanjut dalam proses pengisaran sebagai alat untuk pengurangan saiz bahan dan proses kimia mekanik.
Kata kunci: Bentuk impak; kilang cakera; pendidikan; proses penghancuran; sifat mekanikal; taburan saiz zarah
REFERENCES
Alves,
A.K., Bergmann, C.P. & Berutti, F.A. 2013. Novel
Synthesis and Characterization of Nanostructured Materials. Berlin:
Springer.
Amankwah,
R., Nartey, R., Al-Hassan, S. & Ofori-Sarpong, G. 2010. The effect of
comminution equipment on gravity gold recovery in small-scale mining
operations. International Journal of Environment and Pollution 41(3-4):
316-325.
Ariwibowo, D., Mrihardjono,
J. & Handayani, S.U. 2018. Energy consumption
characteristics of disc mill to produce cob flour. Advanced Science Letters 24(12): 9589-9591.
Dabbour, M., Bahnasawy,
A., Ali, S. & El-Haddad, Z. 2015. Grinding parameters and their effects on
the quality of corn for feed processing. Journal of Food Processing and
Technology 6(9): 1.
Dirgantari, P.D., Nandiyanto,
A.B.D. & Machmud, A. 2019. Development strategy
of earthworms nanoparticle products using ball mill
methods in Indonesia. Journal of Engineering Science and Technolog 14(2): 589-598.
Gorrasi, G. & Sorrentino, A. 2015. Mechanical
milling as a technology to produce structural and functional
bio-nanocomposites. Green Chemistry 17(5): 2610-2625.
Ibrahim,
M., Omran, M. & Abd EL-Rhman, E. 2019. Design and evaluation of crushing hammer
mill. Misr Journal of Agricultural
Engineering 36(1): 1-24.
Jayasundara, C.T., Yang, R., Yu, A. & Rubenstein,
J. 2010. Effects of disc rotation speed and media loading on particle flow and
grinding performance in a horizontal stirred mill. International Journal of
Mineral Processing 96(1-4): 27-35.
Kumar,
C.S., Malleshi, N. & Bhattacharya, S. 2008. A
comparison of selected quality attributes of flours: Effects of dry and wet
grinding methods. International Journal of Food Properties 11(4):
845-857.
Li,
X., Kokawa, M. & Kitamura, Y. 2018. Influence of
micro wet milling parameters on the processing of Komatsuna (Brassica rapavar. perviridis) juice with rich
phosphatidic acid. Journal of Food Engineering 217: 50-57.
Meenakshi,
S., Sundaram, C.S. & Sukumar, R. 2008. Enhanced fluoride sorption by
mechanochemically activated kaolinites. Journal of Hazardous Materials 153(1-2): 164-172.
Nandiyanto, A.B.D. 2019. Amorphous porous carbon microparticles from Lumbricus rubellus. Journal of Engineering Research 7:
13-20.
Nandiyanto, A.B.D., Ragadhita,
R., Oktiani, R., Sukmafitri,
A. & Fiandini, M. 2020. Crystallite sizes on the
photocatalytic performance of submicron WO3 particles. Journal
of Engineering Science and Technology 15(3): 1506-1519.
Nandiyanto, A.B.D., Oktiani,
R. & Ragadhita, R. 2019. How to read and
interpret FTIR spectroscope of organic material. Indonesian Journal of
Science and Technology 4(1): 97-118.
Nandiyanto, A.B.D., Andika,
R., Aziz, M. & Riza, L.S. 2018a. Working volume and milling time on the
product size/morphology, product yield, and electricity consumption in the
ball-milling process of organic material. Indonesian Journal of Science and
Technology 3(2): 82-94.
Nandiyanto, A.B.D., Oktiani,
R., Zaen, R., Danuwijaya,
A.A., Abdullah, A.G. & Haristiani, N. 2018b.
Evaluation of ball-milling process for the production of carbon particles from
rice straw waste. Pertanika Journal of
Science and Technology 26(3): 1373-1382.
Nandiyanto, A.B.D., Zaen,
R. & Oktiani, R. 2018c. Working volume in
high-energy ball-milling process on breakage characteristics and adsorption
performance of rice straw ash. Arabian Journal for Science and Engineering 43(11):
6057-6066.
Nandiyanto, A.B.D., Putra, Z.A., Andika,
R., Bilad, M.R., Kurniawan, T., Zulhijah, R. & Hamidah, I. 2017. Porous activated carbon particles from
rice straw waste and their adsorption properties. Journal of Engineering
Science and Technology 12: 1-11.
Odo, E., Britton, D., Gonfa, G.
& Harting, M. 2012. Structure and
characterization of silicon nanoparticles produced using a vibratory disc mill. The African Review of Physics 7: 0007.
Rice,
A., Tait, J. & Anderson, M. 2009. Use of tungsten carbide disc-mill in
geochemistry: No evidence of contamination. EGUGA 9350.
Sasaki,
K., Okamoto, M., Shirai, T., Tsuge, Y., Fujino, A., Sasaki, D., Morita, M., Matsuda, F., Kikuchi,
J. & Kondo, A. 2016. Toward the complete utilization of rice straw: Methane
fermentation and lignin recovery by a combinational process involving
mechanical milling, supporting material and nanofiltration. Bioresource
Technology 216: 830-837.
Saudi,
H., Salem, S., Mohammad, S., Mostafa, A. & Hassaan,
M. 2015. Utilization of pure silica extracted from rice husk and FTIR
structural analysis of the prepared glasses. Semiconductors 24: 25.
Schneider,
F., Stolle, A., Ondruschka, B. & Hopf, H. 2009. The Suzuki-Miyaura reaction under mechanochemical conditions. Organic
Process Research and Development 13(1): 44-48.
Sukmafitri, A., Ragadhita,
R. & Nandiyanto, A.B.D. 2020. Disk rotation speed
and diameter of impactor in disk mill on particle size distribution from rice
husk. Journal of Engineering Science and Technology 15(3): 1698-1704.
Tahara, T., Imajyo, Y., Nandiyanto, A.B.D., Ogi, T.,
Iwaki, T. & Okuyama, K. 2014. Low-energy
bead-milling dispersions of rod-type titania nanoparticles and their optical
properties. Advanced Powder Technology 25(5): 1492-1499.
Uzun, R.O. & Durmuş, H.
2016. Effect of mill type on morphology of AA6013 aluminium powder. Matéria (Rio de Janeiro) 21(3):
647-654.
Womac, A.R., Igathinathane, C., Bitra, P., Miu, P., Yang, T., Sokhansanj, S. & Narayan, S. 2007. Biomass Pre-Processing Size Reduction with Instrumented Mills. ASABE Meeting Presentation. American Society of Agricultural and Biological
Engineers.
Yadav,
T.P., Yadav, R.M. & Singh, D.P. 2012. Mechanical milling: A top down
approach for the synthesis of nanomaterials and nanocomposites. Nanoscience
and Nanotechnology 2(3): 22-48.
*Corresponding author;
email: nandiyanto@upi.edu
|