Sains Malaysiana 49(12)(2020): 2927-2940

http://dx.doi.org/10.17576/jsm-2020-4912-05

 

Mechanical Impact in Disk Mill for Producing Controlled Rice Husk Particle Size by Changing Impactor Shapes and Disk Rotation Speeds

(Kesan Mekanikal di Kilang Cakera untuk Menghasilkan Saiz Zarah Sekam Padi Terkawal dengan Mengubah Bentuk Impak dan Kelajuan Putaran Cakera)

 

ASEP BAYU DANI NANDIYANTO1*, RISTI RAGADHITA1, AJENG SUKMAFITRI1, MUHAMMAD ROIL BILAD2, MUHAMMAD AZIZ3 & JUMRIL YUNAS4

 

1Departemen Kimia, Universitas Pendidikan Indonesia, Bandung, Indonesia

 

2Chemical Engineering Department, Universiti Teknologi Petronas, 31750 Tronoh, Perak Darul Ridzuan, Malaysia

 

3Institute of Industrial Science, The University of Tokyo, Tokyo, 153-8505, Japan

 

4Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 20 July 2020/Accepted: 8 August 2020

 

ABSTRACT

The purpose of this study was to evaluate regulation of mechanical impact (i.e. impactor sizes and shapes) on triangle, cylinder, and cube as well as disk rotation speed (from 600 to 1500 rpm) in disk mill for controlling size-reduction process. As a model of size-reduced material, rice husk was selected. The study was done by evaluating the final milling product size, which was completed by the measurement of energy impact during the milling process. Experimental results showed that the product size was controllable in the range of between 50 and 1000 μm. The impactor sizes and shapes influenced the contact diameter and area of impactor for making more materials being collided, whereas disk rotation speed led to giving more collision number (between rice husk and impactor) and increasing impact from the collision (due to less time contact during collision). This study provides an important information, which can be further generalized in the use of milling process as a tool for materials size-reduction and mechanochemical process.

 

Keywords: Disk mill; education; impactor shapes; mechanical impact; milling process; particle size distribution

 

ABSTRACT

Tujuan kajian ini adalah untuk menilai peraturan ketetapan impak mekanikal (seperti ukuran dan bentuk impak) dalam segitiga, silinder dan kubus serta kelajuan putaran cakera (dari 600 hingga 1500 rpm) di kilang cakera untuk mengawal proses penurunan saiz. Sebagai model bahan saiz terkurang, sekam padi telah dipilih. Kajian ini dijalankan dengan menilai ukuran akhir produk yang dikisar dan disempurnakan dengan pengukuran kesan tenaga hentaman semasa proses pengisaran. Keputusan uji kaji menunjukkan bahawa ukuran produk dapat dikawal dalam lingkungan 50-1000 μm. Saiz dan bentuk impak mempengaruhi diameter sentuhan dan luas kawasan pemukul kerana lebih banyak bahan berlanggar, sedangkan kelajuan putaran cakera menyebabkan lebih banyak bilangan pelanggaran (antara sekam padi dan impak) dan peningkatan jumlah impak daripada pelanggaran (disebabkan masa sentuhan yang singkat daripada pelanggaran). Kajian ini menyediakan maklumat yang penting dan dapat dikaji dengan lebih lanjut dalam proses pengisaran sebagai alat untuk pengurangan saiz bahan dan proses kimia mekanik.

 

Kata kunci: Bentuk impak; kilang cakera; pendidikan; proses penghancuran; sifat mekanikal; taburan saiz zarah

 

REFERENCES

Alves, A.K., Bergmann, C.P. & Berutti, F.A. 2013. Novel Synthesis and Characterization of Nanostructured Materials. Berlin: Springer.

Amankwah, R., Nartey, R., Al-Hassan, S. & Ofori-Sarpong, G. 2010. The effect of comminution equipment on gravity gold recovery in small-scale mining operations. International Journal of Environment and Pollution 41(3-4): 316-325.

Ariwibowo, D., Mrihardjono, J. & Handayani, S.U. 2018. Energy consumption characteristics of disc mill to produce cob flour. Advanced Science Letters 24(12): 9589-9591.

Dabbour, M., Bahnasawy, A., Ali, S. & El-Haddad, Z. 2015. Grinding parameters and their effects on the quality of corn for feed processing. Journal of Food Processing and Technology 6(9): 1.

Dirgantari, P.D., Nandiyanto, A.B.D. & Machmud, A. 2019. Development strategy of earthworms nanoparticle products using ball mill methods in Indonesia. Journal of Engineering Science and Technolog 14(2): 589-598.

Gorrasi, G. & Sorrentino, A. 2015. Mechanical milling as a technology to produce structural and functional bio-nanocomposites. Green Chemistry 17(5): 2610-2625.

Ibrahim, M., Omran, M. & Abd EL-Rhman, E. 2019. Design and evaluation of crushing hammer mill. Misr Journal of Agricultural Engineering 36(1): 1-24.

Jayasundara, C.T., Yang, R., Yu, A. & Rubenstein, J. 2010. Effects of disc rotation speed and media loading on particle flow and grinding performance in a horizontal stirred mill. International Journal of Mineral Processing 96(1-4): 27-35.

Kumar, C.S., Malleshi, N. & Bhattacharya, S. 2008. A comparison of selected quality attributes of flours: Effects of dry and wet grinding methods. International Journal of Food Properties 11(4): 845-857.

Li, X., Kokawa, M. & Kitamura, Y. 2018. Influence of micro wet milling parameters on the processing of Komatsuna (Brassica rapavar. perviridis) juice with rich phosphatidic acid. Journal of Food Engineering 217: 50-57.

Meenakshi, S., Sundaram, C.S. & Sukumar, R. 2008. Enhanced fluoride sorption by mechanochemically activated kaolinites. Journal of Hazardous Materials 153(1-2): 164-172.

Nandiyanto, A.B.D. 2019. Amorphous porous carbon microparticles from Lumbricus rubellus. Journal of Engineering Research 7: 13-20.

Nandiyanto, A.B.D., Ragadhita, R., Oktiani, R., Sukmafitri, A. & Fiandini, M. 2020. Crystallite sizes on the photocatalytic performance of submicron ­WO3 particles. Journal of Engineering Science and Technology 15(3): 1506-1519.

Nandiyanto, A.B.D., Oktiani, R. & Ragadhita, R. 2019. How to read and interpret FTIR spectroscope of organic material. Indonesian Journal of Science and Technology 4(1): 97-118.

Nandiyanto, A.B.D., Andika, R., Aziz, M. & Riza, L.S. 2018a. Working volume and milling time on the product size/morphology, product yield, and electricity consumption in the ball-milling process of organic material. Indonesian Journal of Science and Technology 3(2): 82-94.

Nandiyanto, A.B.D., Oktiani, R., Zaen, R., Danuwijaya, A.A., Abdullah, A.G. & Haristiani, N. 2018b. Evaluation of ball-milling process for the production of carbon particles from rice straw waste. Pertanika Journal of Science and Technology 26(3): 1373-1382.

Nandiyanto, A.B.D., Zaen, R. & Oktiani, R. 2018c. Working volume in high-energy ball-milling process on breakage characteristics and adsorption performance of rice straw ash. Arabian Journal for Science and Engineering 43(11): 6057-6066.

Nandiyanto, A.B.D., Putra, Z.A., Andika, R., Bilad, M.R., Kurniawan, T., Zulhijah, R. & Hamidah, I. 2017. Porous activated carbon particles from rice straw waste and their adsorption properties. Journal of Engineering Science and Technology 12: 1-11.

Odo, E., Britton, D., Gonfa, G. & Harting, M. 2012. Structure and characterization of silicon nanoparticles produced using a vibratory disc mill. The African Review of Physics 7: 0007.

Rice, A., Tait, J. & Anderson, M. 2009. Use of tungsten carbide disc-mill in geochemistry: No evidence of contamination. EGUGA 9350.

Sasaki, K., Okamoto, M., Shirai, T., Tsuge, Y., Fujino, A., Sasaki, D., Morita, M., Matsuda, F., Kikuchi, J. & Kondo, A. 2016. Toward the complete utilization of rice straw: Methane fermentation and lignin recovery by a combinational process involving mechanical milling, supporting material and nanofiltration. Bioresource Technology 216: 830-837.

Saudi, H., Salem, S., Mohammad, S., Mostafa, A. & Hassaan, M. 2015. Utilization of pure silica extracted from rice husk and FTIR structural analysis of the prepared glasses. Semiconductors 24: 25.

Schneider, F., Stolle, A., Ondruschka, B. & Hopf, H. 2009. The Suzuki-Miyaura reaction under mechanochemical conditions. Organic Process Research and Development 13(1): 44-48.

Sukmafitri, A., Ragadhita, R. & Nandiyanto, A.B.D. 2020. Disk rotation speed and diameter of impactor in disk mill on particle size distribution from rice husk. Journal of Engineering Science and Technology 15(3): 1698-1704.

Tahara, T., Imajyo, Y., Nandiyanto, A.B.D., Ogi, T., Iwaki, T. & Okuyama, K. 2014. Low-energy bead-milling dispersions of rod-type titania nanoparticles and their optical properties. Advanced Powder Technology 25(5): 1492-1499.

Uzun, R.O. & Durmuş, H. 2016. Effect of mill type on morphology of AA6013 aluminium powder. Matéria (Rio de Janeiro) 21(3): 647-654.

Womac, A.R., Igathinathane, C., Bitra, P., Miu, P., Yang, T., Sokhansanj, S. & Narayan, S. 2007. Biomass Pre-Processing Size Reduction with Instrumented Mills. ASABE Meeting Presentation. American Society of Agricultural and Biological Engineers.

Yadav, T.P., Yadav, R.M. & Singh, D.P. 2012. Mechanical milling: A top down approach for the synthesis of nanomaterials and nanocomposites. Nanoscience and Nanotechnology 2(3): 22-48.

 

*Corresponding author; email: nandiyanto@upi.edu

 

   

 

 

previous