Sains Malaysiana 49(12)(2020): 3197-3208

http://dx.doi.org/10.17576/jsm-2020-4912-31

 

Pengaruh Agen Kimia Berbeza terhadap Penguraian Terma dan Pembentukan Fasa Bahan La0.6SR0.4CoO3- δ yang Disediakanmelalui Kaedah Sol-Gel

(Influence of Different Chemical Agents on the Thermal Decomposition and Phase Formation of La0.6Sr0.4CoO3-δ Material Prepared through Sol-Gel Method)

 

ABDULLAH ABDUL SAMAT1,2, MAHENDRA RAO SOMALU3*, ANDANASTUTI MUCHTAR3,4, HAMIMAH ABD. RAHMAN5 & NAFISAH OSMAN6

 

1Fakulti Teknologi Kejuruteraan, Universiti Malaysia Perlis (UniMAP), Kampus UniCITI ALAM, Sungai Chuchuh, Padang Besar 02100, Perlis, Malaysia

 

2Pusat Kecemerlangan Sistem Tanpa Pemandu (Unmanned Aerial Systems), Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia

 

3Institut Sel Fuel, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

4Jabatan Kejuruteraan Mekanikal dan Pembuatan, Fakulti Kejuruteraan dan Alam Bina, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

5Fakulti Kejuruteraan Mekanikal & Pembuatan, Universiti Tun Hussein Onn Malaysia, 84600 Parit Raja, Batu Pahat, Johor Darul Takzim, Malaysia

 

6Fakulti Sains Gunaan, Universiti Teknologi MARA, 02600 Arau, Perlis, Malaysia

 

Received: 6 August 2020/Accepted: 11 September 2020

 

ABSTRAK

Sifat penguraian terma dan pembentukan fasa bahan lantanum strontium kobalt oksida, La0.6Sr0.4CoO3-δ (LSC) yang disediakan melalui kaedah sol-gel berbantu agen kimia berbeza, iaitu agen serakan, agen pempolimeran dan agen permukaan aktif atau surfaktan telah dicirikan secara sistematik masing-masing melalui analisis termogravimetrik (TG) dan pembelauan sinar-X (XRD). Penguraian terma bahan organik dan bahan bukan organik yang tidak diperlukan dalam serbuk pelopor bahan LSC telah lengkap pada suhu kurang daripada 1000 °C bagi serbuk pelopor yang disediakan dengan menggunakan agen serakan dan agen pempolimeran, dan suhu melebihi 1000 °C bagi serbuk pelopor yang disediakan dengan menggunakan surfaktan. Sifat penguraian terma ini dipengaruhi oleh suhu pengeringan serbuk pelopor tersebut dan berat molekul agen kimia. Pembentukan fasa tunggal perovskit LSC telah disahkan dalam serbuk pelopor yang disediakan dengan menggunakan agen serakan, iaitu karbon teraktif dan agen pempolimeran, iaitu etilena glikol selepas serbuk pelopor tersebut dikalsin pada suhu 900 °C. Sebaliknya, fasa tunggal perovskit LSC tidak terbentuk secara lengkap dalam serbuk pelopor yang disediakan dengan menggunakan surfaktan (polietilena glikol, Triton-X-100, Brij-97 dan Tween-80) walaupun selepas serbuk pelopor tersebut telah dikalsin pada suhu yang lebih tinggi iaitu 1100 °C. Kepekatan surfaktan, nisbah molar surfaktan kepada logam kation dan nilai pH larutan bahan pelopor yang tidak sesuai telah menyumbang kepada keputusan tersebut.

 

Kata kunci: Agen kimia; pembentukan fasa; penguraian terma; sel fuel oksida pepejal; sol-gel

 

ABSTRACT

The thermal decomposition and phase formation behaviors of lanthanum strontium cobalt oxide, La0.6Sr0.4CoO3-δ (LSC) material prepared by sol-gel method assisted with different chemical agent namely dispersing agent, polymerizing agent and surface-active agent or surfactant were systematically characterized through thermogravimetric (TG) and X-ray diffraction (XRD) analysis. Thermal decomposition of unwanted organic and inorganic compounds in the precursor powder of LSC material completed at temperature below than 1000 °C for the precursor powder prepared using dispersing and polymerizing agents, and at temperature above than 1000 °C for the precursor powder prepared using surfactant. The thermal decomposition behavior was influenced by the drying temperature of the prepared precursor powder and molecular weight of the chemical agent. Formation of single LSC perovskite phase was confirmed in the precursor powder prepared using dispersant, namely activated carbon and polymerizing agent, namely ethylene glycol after the precursor powder was calcined at 900 °C. Conversely, single LSC perovskite phase did not completely form in the precursor powder prepared using surfactant (polyethylene glycol, Triton-X-100, Brij-97 dan Tween-80) even after it was calcined at a higher temperature which is 1100 °C. Unsuitable surfactant concentration, molar ratio of surfactant to metal cation and precursor material solution pH value might contribute to the results.

 

Keywords: Chemical agent; phase formation; solid oxide fuel cell; sol-gel; thermal decomposition

 

REFERENCES

Abdul Samat, A., Jais, A.A., Somalu, M.R., Osman, N., Muchtar, A. & Lim, K.L. 2018. Electrical and electrochemical characteristics of La0.6Sr0.4CoO3-δ cathode materials synthesized by a modified citrate-EDTA sol-gel method assisted with activated carbon for proton-conducting solid oxide fuel cell application. Journal of Sol-Gel Science and Technology 86(3): 617-630.

Abdul Samat, A., Somalu, M.R., Muchtar, A., Hassan, O.H. & Osman, N. 2016. LSC cathode prepared by polymeric complexation method for proton-conducting SOFC application. Journal of Sol-Gel Science and Technology 78(2): 382-393.

Abdul Samat, A., Abdullah, N.A., Ishak, M.A.M. & Osman, N. 2012. Effect of heat treatment on the phase formation of La0.6Sr0.4CoO3-α. World Academy of Science, Engineering and Technology 70: 822-826.

Baharuddin, N.A., Muchtar, A., Somalu, M.R. & Seyednezhad, M. 2017. Influence of mixing time on the purity and physical properties of SrFe0.5Ti0.5O3-δ powders produced by solution combustion. Powder Technology 313: 382-388.

Chevallier, L., Zunic, M., Esposito, V., Di Bartolomeo, E. & Traversa, E. 2009. A wet-chemical route for the preparation of Ni–BaCe0.9Y0.1O3−δ cermet anodes for IT-SOFCs. Solid State Ionics 180(9-10): 715-720.

Egger, A., Bucher, E., Yang, M. & Sitte, W. 2012. Comparison of oxygen exchange kinetics of the IT-SOFC cathode materials La0.5Sr0.5CoO3−δ and La0.6Sr0.4CoO3−δ. Solid State Ionics 225: 55-60.

Garbayo, I., Esposito, V., Sanna, S., Morata, A., Pla, D., Fonseca, L., Sabaté, N. & Tarancón, A. 2014. Porous La0.6Sr0.4CoO3−δ thin film cathodes for large area micro solid oxide fuel cell power generators. Journal of Power Sources 248: 1042-1049.

Grządka, E. & Matusiak, J. 2017. The effect of ionic and non-ionic surfactants and pH on the stability, adsorption and electrokinetic properties of the alginic acid/alumina system. Carbohydrate Polymers 175: 192-198. 

Huízar-Félix, A.M., Hernández, T., de la Parra, S., Ibarra, J. & Kharisov, B. 2012. Sol-gel based Pechini method synthesis and characterization of Sm1−xCaxFeO3 perovskite 0.1 ≤ x ≤ 0.5. Powder Technology 229: 290-293.

Ismail, I., Osman, N. & Jani, A.M.M. 2020. La0.6Sr0.4Co0.2Fe0.8O3−δ powder: A simple microstructure modification strategy for enhanced cathode electrochemical performance. Journal of Sol-Gel Science and Technology 94(2): 435-447.

Ismail, I., Osman, N. & Jani, A.M.M. 2016. Tailoring the microstructure of La0.6Sr0.4Co0.2Fe0.8O3−α cathode material: The role of dispersing agent. Journal of Sol-Gel Science and Technology 80(2): 259-266.

Mazlan, N.A., Osman, N., Jani, A.M.M. & Yaakob, M.H. 2016. Role of ionic and nonionic surfactant on the phase formation and morphology of Ba(Ce,Zr)O3 solid solution. Journal of Sol-Gel Science and Technology 78(1): 50-59.

Park, J.W. & Lee, K.T. 2018. Enhancing performance of La0.8Sr0.2MnO3-δ-infiltrated Er0.4Bi1.6O3 cathodes via controlling wettability and catalyst loading of the precursor solution for IT-SOFCs. Journal of Industrial and Engineering Chemistry 60: 505-512.

Rangel-Yagui, C.O., Pessoa-Jr., A. & Costa Tavares, L. 2005. Micellar solubilization of drugs. Journal of Pharmaceutical Sciences 8(2): 147-163.

Rashid, N.L.R., Somalu, M.R., Muchtar, A. & Wan Isahak, W.N.R. 2019. Properties of Pr and In-doped BaZrCeY-based electrolyte for proton conducting fuel cell systems. IOP Conference Series: Earth and Enviromental Science 268: 012143.

Shao, Z., Zhou, W. & Zhu, Z. 2012. Advanced synthesis of materials for intermediate-temperature solid oxide fuel cells. Progress in Materials Science 57(4): 804-874.

Somalu, M.R., Abdul Samat, A., Muchtar, A. & Osman, N. 2018. Polymer-based approach in ceramic materials processing for energy device applications. Academic Journal of Polymer Science 1(5): 70-75.

Tao, Y., Shao, J., Wang, J. & Wang, W.G. 2008. Synthesis and properties of La0.6Sr0.4CoO3−δ nanopowder. Journal of Power Sources 185(2): 609-614.

van Doorn, R.H.E., Kruidhof, H., Nijmeijer, A., Winnubst, L. & Burggraaf, A.J. 1998. Preparation of La0.3Sr0.7CoO3-δ perovskite by thermal decomposition of metal-EDTA complexes. Journal of Materials Chemistry 8(9): 2109-2112.

Vahid Mohammadi, A. & Cheng, Z. 2015. Fundamentals of synthesis, sintering issues, and chemical stability of BaZr0.1Ce0.7Y0.1Yb0.1O3-δ proton conducting electrolyte for SOFCs. Journal of The Electrochemical Society 162(8): F803-F811.

Wang, M.S., Wang, J.X., He, C.R., Xue, Y.J., Miao, H., Wang, Q. & Wang, W.G. 2015. A novel composite cathode La0.6Sr0.4CoO3−δ–BaZr0.1Ce0.7Y0.1Yb0.1O3−δ for intermediate temperature solid oxide fuel cells. Ceramics International 41(3): 5017-5025.

Wongmaneerung, R., Yimnirun, R. & Ananta, S. 2009. Effect of two-stage sintering on phase formation, microstructure and dielectric properties of perovskite PMN ceramics derived from a corundum Mg4Nb2O9 precursor. Materials Chemistry and Physics 114(2-3): 569-575.

Wu, Y.C., Huang, P.Y. & Xu, G. 2017. Properties and microstructural analysis of La1−xSrxCoO3−δ (x = 0 – 0.6) cathode materials. Ceramics International 43(2): 2460-2470.

Zeng, R. & Huang, Y. 2017. Enhancing surface activity of La0.6Sr0.4CoO3-δ cathode by a simple infiltration process. International Journal of Hydrogen Energy 42(10): 7220-7225.

Zhuang, S., Liu, Y., Zeng, S., Lv, J., Chen, X. & Zhang, J. 2016. A modified sol-gel method for low-temperature synthesis of homogeneous nanoporous La1−xSrxMnO3 with large specific surface area. Journal of Sol-Gel Science and Technology 77(1): 109-118.

 

*Corresponding author; email: mahen@ukm.edu.my

   

 

 

previous