Sains
Malaysiana 50(12)(2021): 3667-3681
http://doi.org/10.17576/jsm-2021-5012-17
Proteomic Profile Mapping and
Differential Expression of Protein in Ovarian Cancer
(Pemetaan Profil Proteomik dan
Ungkapan Pembezaan Protein dalam Kanser Ovari)
AMBREEN
TAUSEEF1, ASIMA KARIM1, GULFAM
AHMAD2, QURRATULANN AFZA GARDNER3 & MUHAMMAD WAHEED
AKHTAR3*
1Department
of Physiology and Cell Biology, University of Health Sciences, Lahore, Pakistan
2School
of Medical Sciences, Faculty of Medicine and Health, Sydney University,
Australia
3School
of Biological Sciences, University of the Punjab, Lahore, Pakistan
Received:
30 January 2021/Accepted: 30 March 2021
ABSTRACT
This study aimed to characterize
differentially expressed proteins in malignant ovarian tissue to find out
potential novel biomarkers in ovarian cancer (OC). We enrolled 20 ovarian cancer patients (40-65 years) and an equal
number of age-matched healthy women to get malignant and healthy ovarian tissue samples for
protein extraction and quantification after tissue lysis. The
protein profile was analyzed using two-dimensional gel electrophoresis
followed by MALDI-TOF mass spectrometry. Based on the information thus
obtained, the proteins were identified using the relevant software and protein
databank to analyze the malignant and non-malignant ovarian tissue samples (n
= 20/group). In this proteomic analysis of the ovarian tissue, 112 proteins
were detected. Based on a minimum of ≥ 1.5-fold expression difference
(p-value ≤ 0.05; FDR ≤ 0.05 and PMF ≥ 79), 17 proteins were
found to be upregulated while 27 were downregulated in the malignant ovarian
tissue. Six of these proteins have not been previously reported in ovarian
cancer. Out of these, three are upregulated while the other three are
downregulated. The upregulated proteins are centrosomal protein of 290 kDa
(Cep290), uncharacterized protein C1orf109 (C1orf109) and GTPase-activating
Rap/Ran-GAP domain-like protein 3 (GARNL3), and the three downregulated
proteins identified are
actin-related protein 3 (ARP3), cytosolic carboxypeptidase 3 (AGBL3) and NADH dehydrogenase [ubiquinone] 1 alpha
subcomplex subunit 10 (NDUFA10). This proteomic mapping not only provides data on protein profiling of ovarian cancer in
Pakistani population for the first time but also reports six novel
differentially expressed proteins, which have not been previously reported in
ovarian cancer patients. They may serve as potential novel biomarkers after
further validation for early diagnosis and prognosis of ovarian cancer. It also
provides additional data to improve existing knowledge of already reported
protein ovarian cancer biomarkers.
Keywords: Mass spectrometry; ovarian cancer; proteomics; two-dimensional gel
electrophoresis
ABSTRAK
Kajian ini
bertujuan untuk mencirikan protein yang diekspreskan secara berbeza dalam tisu
ovari ganas untuk mengetahui potensi penanda biologi baru dalam barah ovari (OC).
Kami mendaftarkan 20 pesakit barah ovari (40-65 tahun) dan sebilangan wanita
sihat yang sesuai dengan usia untuk mendapatkan sampel tisu ovari yang ganas
dan sihat untuk pengambilan dan pengukuran protein setelah lisis tisu. Profil
protein dianalisis menggunakan elektroforesis gel berdimensi dua diikuti
dengan jisim spektrometri MALDI-TOF. Berdasarkan maklumat yang diperoleh,
protein dikenal pasti menggunakan perisian dan pangkalan data protein yang
relevan untuk menganalisis sampel tisu ovari yang ganas dan tidak ganas (n =
20/kumpulan). Dalam analisis proteomik tisu ovari ini, 112 protein dikesan.
Berdasarkan perbezaan ekspresi minimum ≥ 1.5 gandaan perbezaan ungkapan
(nilai p ≤ 0.05; FDR ≤ 0.05 dan PMF ≥ 79), 17 protein
didapati diatur secara berlebihan sementara 27 diatur dengan lebih rendah pada
tisu ovari malignan. Enam daripada protein ini belum pernah dilaporkan terkena
kanser ovari. Daripada jumlah tersebut, tiga diatur lebih tinggi, sementara
tiga yang lain diatur. Protein yang diatur adalah protein sentrosom 290 kDa
(Cep290), protein C1orf109 yang tidak dicirikan (C1orf109 dan protein seperti
domain 3/Rap-Ran-GAP yang mengaktifkan GTPase (GARNL3) dan tiga protein yang
tidak terkawal yang dikenal pasti adalah protein yang berkaitan dengan aktin 3
(ARP3), sitosolik karboksipeptidase 3 (AGBL3) dan NADH dehidrogenase
[ubiquinone] 1 subkompleks subunit alpha 10 (NDUFA10). Pemetaan proteomik ini
tidak hanya memberikan data mengenai profil protein kanser ovari pada populasi
Pakistan untuk pertama kalinya, tetapi juga melaporkan enam protein yang dinyatakan
secara berbeza, yang sebelumnya tidak pernah dilaporkan pada pesakit barah
ovari. Mereka boleh menjadi penanda biologi baru yang berpotensi setelah
pengesahan lebih lanjut untuk diagnosis awal dan prognosis kanser ovari. Ia
juga memberikan data tambahan untuk meningkatkan pengetahuan sedia ada
mengenai penanda biologi kanser ovari protein yang sudah dilaporkan.
Kata kunci: Elektroforesis gel
berdimensi dua; jisim spektrometri; kanser ovari; proteomik
REFERENCES
Badar,
F. & Mahmood, S. 2017. Epidemiology of cancers in Lahore, Pakistan, among
children, adolescents and adults, 2010-2012: A cross-sectional study part 2. BMJ Open 7(12): e016559.
doi:10.1136/bmjopen-2017-016559.
Bast,
R.C., Badgwell, D., Lu, Z., Marquez, R., Rosen, D., Liu, J. & Lu, K. 2005.
New tumor markers: CA125 and beyond. International
Journal of Gynecologic Cancer 15(Suppl 3): 274. doi:10.1136/ijgc-00009577-200511001-00015.
Bhurgri,
Y., Shaheen, Y., Kayani, N., Nazir, K., Ahmed, R., Usman, A. & Zaidi, S.M.
2011. Incidence, trends and morphology of ovarian cancer in Karachi
(1995-2002). Asian Pacific Journal of
Cancer Prevention 12(6): 1567-1571.
Boveri,
T. 2008. Concerning the origin of malignant tumours by Theodor Boveri.
Translated and annotated by Henry Harris. Journal
of Cell Science 1(Suppl 1): 1-84. doi:10.1242/jcs.025742.
Cheng,
Y., Liu, C., Zhang, N., Wang, S. & Zhang, Z. 2014. Proteomics analysis for
finding serum markers of ovarian cancer. BioMed
Research International 2014: 179040. doi:10.1155/2014/179040.
Cortesi,
L., Rossi, E., Casa, L.D., Barchetti, A., Nicoli, A., Piana, S. & Iannone,
A. 2011. Protein expression patterns associated with advanced stage ovarian
cancer. Electrophoresis 32(15): 1992-2003.
doi:https://doi.org/10.1002/elps.201000654.
Diz,
A.P., Carvajal-Rodríguez, A. & Skibinski, D.O.F. 2011. Multiple hypothesis
testing in proteomics: a strategy for experimental work. Molecular Cellular Proteomics 10(3): M110.004374. doi:10.1074/mcp.M110.004374.
Dou,
P., Li, Y., Sun, H., Xie, W., Zhang, X., Zhang, X. & Li, Y. 2020. C1orf109L
binding DHX9 promotes DNA damage depended on the R-loop accumulation and
enhances camptothecin chemosensitivity. Cell
Proliferation 53(9): e12875. doi:10.1111/cpr.12875.
Fujii,
J. & Ikeda, Y. 2002. Advances in our understanding of peroxiredoxin, a
multifunctional, mammalian redox protein. Redox
Report 7(3): 123-130. doi:10.1179/135100002125000352.
Gagné,
J.P., Gagné, P., Hunter, J.M., Bonicalzi, M.E., Lemay, J.F., Kelly, I. &
Poirier, G.G. 2005. Proteome profiling of human epithelial ovarian cancer cell
line TOV-112D. Molecular and Cellular
Biochemistry 275(1-2): 25-55. doi:10.1007/s11010-005-7556-1.
Girolimetti,
G., Perrone, A.M., Santini, D., Barbieri, E., Guerra, F., Ferrari, S. &
Turchetti, D. 2014. BRCA-associated ovarian cancer: From molecular genetics to
risk management. BioMed Reserach
International 2014: 787143. doi:10.1155/2014/787143.
Hashmi,
A.A., Hussain, Z.F., Bhagwani, A.R., Edhi, M.M., Faridi, N., Hussain, S.D.
& Khan, M. 2016. Clinicopathologic features of ovarian neoplasms with
emphasis on borderline ovarian tumors: An institutional perspective. BMC Research Notes 9: 205.
doi:10.1186/s13104-016-2015-5.
Homburg,
R. 2008. Polycystic ovary syndrome. Best
Practice & Research: Clinical Obstetrics & Gynaecology 22(2):
261-274. doi:10.1016/j.bpobgyn.2007.07.009.
Hurst,
V., Shimada, K. & Gasser, S.M. 2019. Nuclear actin and actin-binding
proteins in DNA repair. Trends Cell Biol. 29(6): 462-476. doi:10.1016/j.tcb.2019.02.010.
Jemal,
A., Siegel, R., Ward, E., Hao, Y., Xu, J., Murray, T. & Thun, M.J. 2008.
Cancer statistics, 2008. CA: A Cancer
Journal for Clinicians 58(2): 71-96. doi:10.3322/ca.2007.0010.
Kozak,
K.R., Su, F., Whitelegge, J.P., Faull, K., Reddy, S. & Farias-Eisner, R.
2005. Characterization of serum biomarkers for detection of early stage ovarian
cancer. Proteomics 5(17): 4589-4596.
doi:10.1002/pmic.200500093.
Le
Page, C., Provencher, D., Maugard, C.M., Ouellet, V. & Mes-Masson, A.M.
2004. Signature of a silent killer: Expression profiling in epithelial ovarian
cancer. Expert Review of Molecular
Diagnostics 4(2): 157-167. doi:10.1586/14737159.4.2.157.
Liu,
S.S., Zheng, H.X., Jiang, H.D., He, J., Yu, Y., Qu, Y.P. & Li, Y. 2012.
Identification and characterization of a novel gene, C1orf109, encoding a CK2
substrate that is involved in cancer cell proliferation. Journal of Biomedical Science 19(1): 49. doi:10.1186/1423-0127-19-49.
Momenimovahed,
Z., Tiznobaik, A., Taheri, S. & Salehiniya, H. 2019. Ovarian cancer in the
world: Epidemiology and risk factors. International
Journal Womens Health 11: 287-299. doi:10.2147/IJWH.S197604.
Moradi,
P., Davies, W.L., Mackay, D.S., Cheetham, M.E. & Moore, A.T. 2011. Focus on
molecules: Centrosomal protein 290 (CEP290). Experimental Eye Research 92(5): 316-317.
doi:10.1016/j.exer.2010.05.009.
Morita,
A., Miyagi, E., Yasumitsu, H., Kawasaki, H., Hirano, H. & Hirahara, F. 2006.
Proteomic search for potential diagnostic markers and therapeutic targets for
ovarian clear cell adenocarcinoma. Proteomics 6(21): 5880-5890. doi:10.1002/pmic.200500708.
Mostafa,
M.F., El-Etreby, N. & Awad, N. 2012. Retrospective analysis evaluating ovarian
cancer cases presented at the clinical oncology department, Alexandria
University. Alexandria Journal of
Medicine 48(4): 353-360.
North,
S.J., Jang-Lee, J., Harrison, R., Canis, K., Ismail, M.N., Trollope, A.
& Haslam, S.M. 2010. Mass
spectrometric analysis of mutant mice. Methods
in Enzymology 478: 27-77. doi:10.1016/s0076-6879(10)78002-2.
Razi,
S., Ghoncheh, M., Mohammadian-Hafshejani, A., Aziznejhad, H., Mohammadian, M.
& Salehiniya, H. 2016. The incidence and mortality of ovarian cancer and
their relationship with the Human Development Index in Asia. Ecancermedicalscience 10: 628.
doi:10.3332/ecancer.2016.628.
Stead,
D.A., Preece, A. & Brown, A.J. 2006. Universal metrics for quality
assessment of protein identifications by mass spectrometry. Molecular Cellular Proteomics 5(7):
1205-1211. doi:10.1074/mcp.M500426-MCP200.
Stierum,
R., Gaspari, M., Dommels, Y., Ouatas, T., Pluk, H., Jespersen, S. & Ommen,
B.V. 2003. Proteome analysis reveals novel proteins associated with
proliferation and differentiation of the colorectal cancer cell line Caco-2. Biochimica et Biophysica Acta (BBA) -
Proteins and Proteomics 1650(1-2): 73-91.
doi:10.1016/s1570-9639(03)00204-8.
Teh,
M.T., Gemenetzidis, E., Patel, D., Tariq, R., Nadir, A., Bahta, A.W. &
Hutchison, I.L. 2012. FOXM1 induces a global methylation signature that mimics
the cancer epigenome in head and neck squamous cell carcinoma. PLoS ONE 7(3): e34329.
doi:10.1371/journal.pone.0034329.
Visintin,
I., Feng, Z., Longton, G., Ward, D.C., Alvero, A.B., Lai, Y. & Mor, G.
2008. Diagnostic markers for early detection of ovarian cancer. Clinical Cancer Research 14(4):
1065-1072. doi:10.1158/1078-0432.Ccr-07-1569.
Wang,
L.L., Jin, X.H., Cai, M.Y., Li, H.G., Chen, J.W., Wang, F.W. & Xie, D.
2018. AGBL2 promotes cancer cell growth through IRGM-regulated autophagy and
enhanced Aurora A activity in hepatocellular carcinoma. Cancer Letter 414: 71-80. doi:10.1016/j.canlet.2017.11.003.
Zhang,
H., Ren, Y., Pang, D. & Liu, C. 2014. Clinical implications of AGBL2
expression and its inhibitor latexin in breast cancer. World J. Surg. Oncol. 12: 142. doi:10.1186/1477-7819-12-142.
*Corresponding author;
email: mwa.sbs@pu.edu.pk
|