Sains Malaysiana 50(7)(2021): 1885-1899

http://doi.org/10.17576/jsm-2021-5007-05

 

Fluvial-Tidal to Fluvial-Lacustrine Sedimentation of the Middle Miocene to Pleistocene Mapia Formation, Dogiyai, Papua (Indonesia)

(Pengendapan Fluvium-Pasang Surut hingga Fluvium- Lakustrin daripada Penghasilan Mapia Miosen Tengah hingga Pleistosen, Dogiyai, Papua (Indonesia))

 

RAKHMAT FAKHRUDDIN*

 

Centre for Geological Survey, Geological Agency, Ministry of Energy and Mineral Resources, Jl. Diponegoro No.57 40122 Bandung, Jawa Barat, Indonesia

 

Received: 16 March 2020/Accepted: 19 November 2020

 

ABSTRACT

A sedimentological and palynological investigation was carried out on outcropping sedimentary rocks at Dogiyai, Papua, proposed to be named as the Mapia Formation. The age range is from Middle Miocene to Pleistocene. The lower Mapia Formation was deposited at Metroxylon type to Nothofagus emarcida Zone, Middle Miocene to Early Pliocene. It is comprised of three facies associations: tidal channel, tidal point bar, and tidal flat deposits. A tidally dominated fluvially influenced depositional environment is suggested for the deposition of sediments of this unit. The upper Mapia Formation was deposited at Malvacipollis diversus Zone, Garcinia cuspidata type Zone, and Proteacidites sp. Zone, Late Pliocene to Pleistocene. It is comprised of five facies associations: delta front, slump, debrite, turbidite, and lacustrine mud deposits. A non-channelized deep-lacustrine slump and debris-flow dominated depositional environment is suggested for the deposition of sediments of this unit. The lower Mapia Formation was deposited as synorogenic clastic sediments at the beginning of Central Range orogeny event while the upper Mapia Formation was deposited in the piggyback basin at the major uplift event.

 

Keywords: Central Range orogeny; Indonesia; Mapia formation; Middle Miocene-Pleistocene; Papua

 

ABSTRAK

Penyelidikan sedimentologi dan palinologi dilakukan terhadap singkapan batuan sedimen di Dogiyai, Papua, yang diusulkan untuk disebut sebagai Penghasilan Mapia. Julat umur adalah daripada Miosen Tengah hingga Pleistosen. Penghasilan Mapia yang lebih rendah disimpan pada jenis Metroxylon ke ZonNothofagus emarcida, Miosen Tengah hingga Pliosen Awal. Ia terdiri daripada tiga kumpulan fasies: saluran pasang surut, bar titik pasang surut dan deposit rata pasang surut. Persekitaran penyimpanan yang fluvium terpengaruh pasang surut terdominan disarankan untuk penyimpanan endapan unit ini. Penghasilan Mapia atas disimpan di Zon Malvacipollis diversus, Zon jenis Garcinia cuspidata, dan ZonProteacidites sp., Akhir Pliosen hingga Pleistosen. Ia terdiri daripada lima kumpulan fasies: permukaan delta, nendat, debrit, turbidit, dan penyimpan lumpur lakustrin. Persekitaran pemendapan nendat lakustrin dalam yang tak disalur dan aliran puing yang terdominan adalah dicadangkan untuk penyimpanan endapan unit ini. Penghasilan Mapia yang lebih rendah disimpan sebagai endapan klastik sinorogenik pada awal kejadian orogeni Julat Pusat sementara Formasi Mapia atas disimpan di lembangan gendong pada kejadian peningkatan besar.

 

Kata kunci: Formasi Mapia; Indonesia; Miosen-Pleistocene tengah; orogeni Julat Pusat; Papua

 

REFERENCES

Abbott, L.D. 1995. Neogene tectonic reconstruction of the Adelbert-Finisterre-New Britain collision, northern Papua New Guinea. Journal of Southeast Asian Earth Sciences 11: 33-51.

Allen, J.R.L. 1963. The classification of cross-stratified units, with notes on their origin. Sedimentology 2(2): 93-114.

Atmawinata, S., Hakim, A.S. & Pieters, P.E. 1989. Geological Map of the Ransiki Sheet, Irian Jaya. 1:250,000. Bandung: Geological Research and Development Center.

Baillie, P.W., Fraser, T.H., Robert, H. & Myers, K. 2004. Geological development of eastern Indonesia and the northern Australia collision zone: A review. Special Publication - Northern Territory Geological Survey 2004: 539-550.

Berner, R.A. 1984. Sedimentary pyrite formation: An update. Geochimica et Cosmochimica Acta 48(4): 605-615.

Boggs, S. 2012. Principles of Sedimentology and Stratigraphy. 5th Ed. Hoboken: Pearson Prentice Hall.

Boyd, R., Dalrymple, R.W. & Zaitlin, B.A. 2006. Estuarine and incised-valley facies models. In Facies Models Revisited, edited by Posamentier, H.W. & Walker, R.G. Oklahoma: SEPM Special Publication 84, pp. 171-235.

Chung, K.W., Sum, C.W. & Rahman, A.H.A. 2015. Stratigraphic succession and depositional framework of the Sandakan formation, Sabah. Sains Malaysiana 44(7): 931-940.

Cohen, A. 2020. Deposystem Evolution in the Foreland Basin Lakes of South America. The Arizona Board of Regents. Accessed on 16 March 2020.

Collinson, J.D. 1996. Alluvial sediments. In Sedimentary Environments: Processes, Facies and Stratigraphy, edited by Reading, H.G. Oxford: Blackwell Science. pp. 37-82.

Collinson, J.D. 1969. The sedimentology of the Grindslow Shales and the Kinderscout Grit: A deltaic complex in the Namurian of northern England. Journal of Sedimentary Petrology 39: 194-221.

Dalrymple, R.W. & Choi, K. 2007. Morphologic and facies trends through the fluvial-marine transition in tide-dominated depositional systems: A schematic framework for environmental and sequence-stratigraphic interpretation. Earth-Science Reviews 81: 135-174.

Dalrymple, R.W., Zaitlin, B.A. & Boyd, R. 1992. Estuarine facies models; conceptual basis and stratigraphic implications. Journal of Sedimentary Research 62(6): 1130-1146.

Enos, P. 1977. Flow regimes in debris flow. Sedimentology 24(1): 133-142.

Fan, D. 2013. Classifications, sedimentary features and facies associations of tidal flats. Journal of Palaeogeography 2(1): 66-80.

Greenwood, D.R. 1991. The taphonomy of plant macrofossils. In The Processes of Fossilization, edited by Donovan, S.K. New York: Columbia University Press. pp. 141-169.

Gugliotta, M., Flint, S.S., Hodgson, D.M. & Veiga, G.D. 2016. Recognition criteria, characteristics and implications of the fluvial to marine transition zone in ancient deltaic deposits (Lajas Formation, Argentina). Sedimentology 63: 1971-2001.

Hall, R. 2012. Sundaland and Wallacea: Geology, plate tectonics and palaeogeography. In Biotic Evolution and Environmental Change in Southeast Asia edited by Gower, D.J., Richardson, J.E., Rosen, B.R., Rüber, L. & Williams, S.T. Cambridge: Cambridge University Press. pp. 32-78.

Hampton, M.A. 1972. The role of subaqueous debris flow in generating turbidity currents. Journal of Sedimentary Research 42(4): 775-793.

Harahap, B.H. 2012. Tectonostratigraphy of the southern part of Papua and Arafura Sea, Eastern Indonesia. Indonesian Journal of Geology 7(3): 167-187.

Harahap, B.H. 1997. The metamorphic complex of the central range of Papua with special reference to the Enarotali Quadrangle. Journal of Geology and Mineral Resources 7(67): 16-25.

Harahap, B.H., Hakim, A.S. & Dow, D.B. 1990. Geological Map of the Enarotali Sheet, Irian Jaya. 1:250,000. Bandung: Geological Research and Development Center.

Hassan, M.H.A., Sim, Y.B., Peng, L.C. & Rahman, A.H.A. 2013. Facies analysis of the uppermost Kubang Pasu formation, Perlis: A wave-and storm-influenced coastal depositional system. Sains Malaysiana 42(8): 1091-1100.

Hill, K.C. & Hall, R. 2003. Mesozoic-Cenozoic evolution of Australia’s New Guinea margin in a west Pacific context. Special Paper of the Geological Society of America 372: 265-290.

Hubbard, S.M., Smith, D.G., Nielsen, H., Leckie, D.A., Fustic, M., Spencer, R.J. & Bloom, L. 2011. Seismic geomorphology and sedimentology of a tidally influenced river deposit, lower Cretaceous Athabasca oil sands, Alberta, Canada. AAPG Bulletin 95(7): 1123-1145.

Hughes, Z.J. 2012. Tidal channels on tidal flats and marshes. In Principles of Tidal Sedimentology, edited by Davis, R.A. & Dalrymple, R.W. Dordrecht: Springer. pp. 269-300.

Hutchison, C.S. 1989. Geological Evolution of South-East Asia. Oxford: Clarendon Press.

Kartikasari, S.N., Marshall, A.J. & Beehler, B.M. 2012. Ekologi Papua, Seri Ekologi Indonesia, Jilid VI. Jakarta: Yayasan Pustaka Obor Indonesia dan Conservation International.

Khan, A.M. 1976. Palynology of tertiary sediments from Papua New Guinea. II. Gymnosperm pollen from upper tertiary sediments. Australian Journal of Botany 24(6): 783-791.

Lasemi, Y., Jahani, D., Amin-Rasouli, H. & Lasemi, Z. 2012. Ancient carbonate tidalites. In Principles of Tidal Sedimentology, edited by Davis, R.A & Dalrymple, R.W. Dordrecht: Springer. pp. 567-607.

Lelono, E.B. 2007. Zonasi polen tersier Indonesia timur. Lembaran Publikasi Lemigas 41(1): 1-8.

Li, X., Liu, H., Pan, S., Chen, Q., WanYan, R., Xu, W., Wang, H., Huang, J. & Wang, J. 2018. Subaqueous sandy mass-transport deposits in lacustrine facies of the upper triassic Yanchang formation, Ordos Basin, Central China. Marine and Petroleum Geology 97: 66-77.

Liu, J., Xian, B., Wang, J., Ji, Y., Lu, Z. & Liu, S. 2017a. Sedimentary architecture of a sub-lacustrine debris fan: Eocene Dongying depression, Bohai Bay Basin, east China. Sedimentary Geology 362: 66-82.

Liu, X., Ding, X., Zhang, S. & He, H. 2017b. Origin and depositional model of deep-water lacustrine sandstone deposits in the 7th and 6th members of the Yanchang formation (Late Triassic), Binchang area, Ordos Basin, China. Petroleum Science 14(1): 24-36.

Longhitano, S.G., Mellere, D., Steel, R.J. & Ainsworth, R.B. 2012. Tidal depositional systems in the rock record: A review and new insights. In Modern and Ancient Depositional Systems: Perspectives, Models and Signatures, edited by Longhitano, S.G., Mellere, D. & Ainsworth, R.B. Amsterdam: Sedimentary Geology Special Issue 279. pp. 2-22.

Longley, I.M. 1997. The tectonic evolution of SE Asia. In Petroleum Geology of Southeast Asia, edited by Fraser, A.J., Mathews, S.J. & Murphy, R.W. Amsterdam: Geological Society Special Publication 126. pp. 311-339.

Lowe, R.D. 1982. Sediment gravity flows; II, Depositional models with special reference to the deposits of high-density turbidity currents. Journal of Sedimentary Research 52(1): 279-297.

Madon, M. 2010. Submarine mass-transport deposits in the Semantan formation (Middle-Upper Triassic), central Peninsular Malaysia. Bulletin of the Geological Society of Malaysia 56: 15-26.

Morley, R.J. 1998. Palynological evidence for Tertiary plant dispersals in the SE Asian region in relation to plate tectonics and climate. In Biogeography and Geological Evolution of SE Asia, edited by Hall, R. & Holloway, J.D. Leiden: Backhuys Publishers. pp. 211-234.

Morley, R.J. 2011. Dispersal and paleoecology of tropical podocarps. In Ecology of the Podocarpaceae in Tropical Forests, edited by Turner, B.L. & Cernusak, L.A. Washington DC: Smithsonian Contributions to Botany 95. pp. 21-41.

Musial, G., Labourdette, R., Franco, J. & Reynaud, J. 2013. Modeling of a tide-influenced point-bar heterogeneity distribution and impacts on steam-assisted gravity drainage production: example from Steepbank river, McMurray formation, Canada. In Heavy-Oil and Oil-Sand Petroleum Systems in Alberta and Beyond edited by Hein, F.J., Leckie, D., Larter, S. & Suter, J.R. Texas: AAPG Studies in Geology 64. pp. 545-564.

Musial, G., Reynaud, J., Gingras, M.K., Féniès, H., Labourdette, R. & Parize, O. 2012. Subsurface and outcrop characterization of large tidally influenced point bars of the Cretaceous McMurray Formation (Alberta, Canada). Sedimentary Geology 279: 156-172.

Olariu, C. & Bhattacharya, J.P. 2006. Terminal distributary channels and delta front architecture of river-dominated delta systems. Journal of Sedimentary Research 76(2): 212-233.

Olariu, C., Steel, R.J., Olariu, M.I. & Choi, K. 2015. Chapter 10 - Facies and architecture of unusual fluvial-tidal channels with inclined heterolithic strata: Campanian Neslen Formation, Utah, USA. In Developments in Sedimentology, edited by Ashworth, P.J., Best, J.L. & Parsons, D.R. Amsterdam: Elsevier 68. pp. 353-394.

Panggabean, H. & Pigram, C.J. 1989. Geological Map of the Waghete Sheet, Irian Jaya. 1:250,000. Bandung: Geological Research and Development Centre.

Pigram, C.J. & Panggabean, H. 1984. Rifting of the Northern Margin of the Australian Continent and the Origin of some Microcontinents in Eastern Indonesia. Tectonophysics 107: 331-353.

Playford, G. & Rigby, J. 2008. Permian palynoflora of the Ainim and Aiduna formations, West Papua. Revista Espanola de Micropaleontologia 40(1-2): 1-57.

Reineck, H.E. & Singh, I.B. 1980. Depositional Sedimentary Environments. 2nd ed. Heidelberg: Springer.

Roslan, M.H.K., Ali, C.A. & Mohamed, K.R. 2016. Fasies dan sekitaran sedimen formasi singa di Langkawi, Malaysia. Sains Malaysiana 45(12): 1897-1904.

Santos, A. & Rossetti, D. 2006. Depositional model of the Ipixuna formation (Late Cretaceous- Early Tertiary), Rio Capim area, northern Brazil. Latin American Journal of Sedimentology and Basin Analysis 13(2): 101-117.

Schomacker, E.R., Kjemperud, A.V., Nystuen, J.P. & Jahren, J.S. 2010. Recognition and significance of sharp-based mouth-bar deposits in the Eocene Green River Formation, Uinta Basin, Utah. Sedimentology 57: 1069-1087.

Shanmugam, G. 2018. Slides, Slumps, Debris Flows, Turbidity Currents, and Bottom Currents: Implications. Amsterdam: Reference Module in Earth Systems and Environmental Sciences, Elsevier.

Shanmugam, G. 2017. Contourites: Physical oceanography, process sedimentology, and petroleum geology. Petroleum Exploration and Development 44(2): 183-216.

Shanmugam, G. 2000. 50 years of the turbidite paradigm (1950s-1990s): Deep-water processes and facies models - A critical perspective. Marine and Petroleum Geology 17(2): 285-342.

Shanmugam, G., Lehtonen, L.R., Straume, T., Syvertsen, S.E., Hodgkinson, R.J. & Skibeli, M. 1994. Slump and debris-flow dominated upper slope facies in the cretaceous of the Norwegian and northern North Seas (61-67°N): implications for sand distribution. AAPG Bulletin 78: 910-937.

Talling, P.J., Masson, D.G., Sumner, E.J. & Malgesini, G. 2012. Subaqueous sediment density flows: Depositional processes and deposit types. Sedimentology 59(7): 1937-2003.

Tucker, M.E. & Wright, V.P. 1990. Carbonate Sedimentology. Oxford: Blackwell Scientific Ltd.

Van Geel, B. 2001. Non-pollen palynomorphs. In Tracking Environmental Change Using Lake Sediments. Volume 3: Terrestrial, Algal, and Siliceous indicators, edited by Smol, J.P., Birks, H.J.B. & Last, W.M. Dordrecht: Kluwer Academic Publishers. pp. 1-17.

Van Ufford, A.Q. & Cloos, M. 2005. Cenozoic tectonics of New Guinea. AAPG Bulletin 89(1): 119-140.

Walker, R.G. 2006. Facies models revisited: Introduction. In Facies Models Revisited, edited by Posamentier, H.W. & Walker, R.G. Oklahoma: SEPM Special Publication 84. pp. 293-338.

Warren, P.Q. & Cloos, M. 2007. Petrology and tectonics of the derewo metamorphic belt, west New Guinea. International Geology Review 49(6): 520-553.

Xu, Q., Shi, W., Xie, X., Manger, W., McGuire, P., Zhang, X., Wang, R. & Xu, Z. 2016. Deep-lacustrine sandy debrites and turbidites in the lower triassic Yanchang Formation, southeast Ordos Basin, central China: Facies distribution and reservoir quality. Marine and Petroleum Geology 77: 1095-1107.

Zou, C., Wang, L., Li, Y., Tao, S. & Hou, L. 2012. Deep-lacustrine transformation of sandy debrites into turbidites, upper triassic, central China. Sedimentary Geology 265-266: 143-155.

 

*Corresponding author; email: rakhmat.fakhruddin@esdm.go.id

 

 

previous