Sains Malaysiana 50(7)(2021): 2025-2034
http://doi.org/10.17576/jsm-2021-5007-17
Effect of Multi-Sized Graphite Filler on the Mechanical Properties and
Electrical Conductivity
(Kesan Pengisi Grafit Berbilang Saiz pada Sifat Mekanikal dan Kekonduksian Elektrik)
Nabilah Afiqah Mohd Radzuan1,2*, Abu Bakar Sulong1,2 & Iswandi3
1Precision Research Group, Department
of Mechanical and Manufacturing, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600
UKM Bangi, Selangor Darul Ehsan, Malaysia
2Fuel Cell Plate Material
and Manufacture Group, Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
3Department of Mechanical
Engineering, Institut Teknologi Medan, Medan, Indonesia
Received: 7 August 2020/Accepted:
30 November 2020
ABSTRACT
This research successfully fabricated conductive polymer composites
(CPCs) prepared using multiple sizes of graphite filler (40, 100, 150, and 200
µm) that provided excellent network formation within the fillers and
polypropylene matrix which further improved both electrical conductivity and
flexural strength. An important discussion on the fabrication technique,
including compression moulding and injection moulding was conducted, to
manufacture CPC materials with a thickness less than 3 mm. The findings of this
study suggested that fabricating CPCs using the compression moulding technique
with a graphite composition of 75 wt. % exhibited better network connectivity
as the electrical conductivity increased to 15 Scm-1. Also, compared
to the three sizes of graphite filler (40/100/200 µm) it resulted in 13 Scm-1,
with two sizes (40/200 µm) reporting better electrical conductivity at 15 Scm-1.
This demonstrated that the addition of multiple sizes was not necessarily due
to agglomeration occurring. The resultant graphite composites of 40/200 µm
possessed a more stable structure having a thin composite layer (2.5 mm) which
promoted better electrical conductivity suitable for bipolar plate used in
proton exchange membrane fuel cells.
Keywords: Carbon;
composites; electrical conductivity; fuel cells; mechanical properties
ABSTRAK
Kajian ini berjaya menghasilkan konduktif polimer komposit (KPK) dengan menggunakan beberapa jenis saiz pengisi grafit (40, 100, 150 dan 200 µm) yang berupaya menghasilkan jaringan elektrik yang cemerlang antara pengisi dan matrik polimer sekaligus meningkatkan nilai keberaliran elektrik dan kekuatan tegangan. Perbincangan penting ditekankan pada kaedah pembuatan termasuk penggunaan kaedah pembentukan mampatan dan pengacuan suntikan dalam pembikinan bahan KPK berketebalan kurang 3 mm. Penemuan kajian ini menunjukkan pembuatan bahan KPK menggunakan kaedah pembentukan mampatan pada komposisi grafit sebanyak 75 % bt. mampu menghasilkan jaringan keberaliran elektrik yang baik dengan nilai keberaliran elektrik direkodkan sebanyak 15 Scm-1. Perbandingan ke atas tiga saiz pengisi grafit berbeza iaitu (40/100/200 µm) memperoleh nilai keberaliran elektrik sebanyak 13 Scm-1 manakala penggunaan dua saiz pengisi grafit memperoleh nilai sebanyak 15 Scm-1 iaitu jauh lebih baik. Keadaan ini menunjukkan bahawa pertambahan saiz berbeza tidak semestinya meningkatkan nilai keberaliran elektrik kesan daripada pergumpalan yang lebih mudah berlaku.
Kajian menunjukkan komposit grafit dengan saiz 40/200 µm mempunyai struktur yang lebih stabil serta nilai keberaliran elektrik lebih tinggi dengan ketebalan 2.5 mm bersesuaian dengan aplikasinya sebagai plat dwikutub dalam sel fuel membran penukar proton.
Kata kunci: Karbon; keberaliran elektrik; komposit; sel fuel; sifat mekanikal
REFERENCES
Adloo,
A., Sadeghi, M., Masoomi, M. & Pazhooh, H.N. 2016. High performance
polymeric bipolar plate based on polypropylene/graphite/graphene/nano-carbon
black composites for PEM fuel cells. Renewable Energy 99: 867-874.
Alegre,
C., Álvarez-Manuel, L., Mustata, R., Valiño, L., Lozano, A. & Barreras, F.
2019. Assessment of the durability of low-cost Al bipolar plates for high
temperature PEM fuel cells. International Journal of Hydrogen Energy 44(25): 12748-12759.
Antunes,
R.A., De Oliveira, M.C.L., Ett, G. & Ett, V. 2011. Carbon materials in
composite bipolar plates for polymer electrolyte membrane fuel cells: A review
of the main challenges to improve electrical performance. Journal of Power
Sources 196(6): 2945-2961.
Antunes,
R.A., Oliveira, M.C.L., Ett, G. & Ett, V. 2010. Corrosion of metal bipolar
plates for PEM fuel cells: A review. International Journal of Hydrogen
Energy 35(8): 3632-3647.
Ardanuy,
M., Rodríguez-Perez, M.A. & Algaba, I. 2011. Electrical conductivity and
mechanical properties of vapor-grown carbon nanofibers/trifunctional epoxy
composites prepared by direct mixing. Composites Part B: Engineering 42(4): 675-681.
Arutchelvi,
J., Sudhakar, M., Arkatkar, A., Doble, M., Bhaduri, S. & Uppara, P.V. 2008.
Biodegradation of polyethylene and polypropylene. Indian Journal of
Biotechnology 7: 9-22.
Balogun,
Y.A. & Buchanan, R.C. 2010. Enhanced percolative properties from partial
solubility dispersion of filler phase in conducting polymer composites (CPCs). Composites
Science and Technology 70(6): 892-900.
Breuer,
O. & Sundararaj, U. 2004. Big returns from small fibers: A review of
polymer/carbon nanotube composites. Polymer Composites 25(6): 630-645.
Chen,
X., Deng, X., Kim, N.Y., Wang, Y., Huang, Y., Peng, L., Huang, M., Zhang, X.,
Chen, X., Luo, D. & Wang, B. 2018. Graphitization of graphene oxide films
under pressure. Carbon 132: 294-303.
Hui,
C., Liu, H.B., Li, J.X., Li, Y. & He, Y.D. 2009. Characteristics and
preparation of polymer/graphite composite bipolar plate for PEM fuel cells. Journal
of Composite Materials 43(7): 755-767.
Dhakate,
S.R., Sharma, S., Borah, M., Mathur, R.B. & Dhami, T.L. 2008. Expanded
graphite-based electrically conductive composites as bipolar plate for PEM fuel
cell. International Journal of Hydrogen Energy 33(23): 7146-7152.
Folorunso,
O., Hamam, Y., Sadiku, R., Ray, S.S. & Joseph, A.G. 2019. Parametric
analysis of electrical conductivity of polymer-composites. Polymers 11(8): 1-20.
Fulmali,
A.O., Sen, B., Ray, B.C. & Prusty, R.K. 2020. Effects of carbon
nanotube/polymer interfacial bonding on the long-term creep performance of
nanophased glass fiber/epoxy composites. Polymer Composites 41(2):
478-493.
Hamimah,
A.R., Norhamidi, M. & Huda Abdullah, A.M. 2010. (La1-xSrx Co1-y Fey
O3-d(LSCF) composite as durable cathode materials for intermediate-low
temperature solid oxide fuel cell: Research review). Jurnal Kejuruteraan: 22: 1-10.
Heo,
S.I., Yun, J.C., Oh, K.S. & Han, K.S. 2006. Influence of particle size and
shape on electrical and mechanical properties of graphite reinforced conductive
polymer composites for the bipolar plate of PEM fuel cells. Advanced
Composite Materials: The Official Journal of the Japan Society of Composite
Materials 15(1): 115-126.
Ismail,
M.H., Muhamad, N. & Omar, M.A. 2008. Characterization of metal injection
molding (MIM) feedstock based on water soluble binder system. Jurnal
Kejuruteraan 20: 11-18.
Kuo,
J.K. & Chen, C.K. 2006. A novel Nylon-6 - S316L fiber compound material for
injection molded PEM fuel cell bipolar plates. Journal of Power
Sources 162(1): 207-214.
Lee,
J.H., Jang, Y.K., Hong, C.E., Kim, N.H., Li, P. & Lee, H.K. 2009. Effect of
carbon fillers on properties of polymer composite bipolar plates of fuel cells. Journal of Power Sources 193(2): 523-529.
Leigh,
S.J., Bradley, R.J., Purssell, C.P., Billson, D.R. & Hutchins, D.A. 2012. A
simple, low-cost conductive composite material for 3D printing of electronic
sensors. PLoS ONE 7(11): 1-6.
Li,
M.K., Gao, C.X., Zhang, X., Zheng, W.T., Zhao, Z.D. & Meng, F.L. 2015.
Electrical conductivity of calcined graphene oxide/diatomite composites with a
segregated structure. Materials Letters 141: 125-127.
Li,
X., Lan, S., Xu, Z., Jiang, T. & Peng, L. 2019. Thin metallic wave-like
channel bipolar plates for proton exchange membrane fuel cells: Deformation
behavior, formability analysis and process design. Journal of Power Sources 444(May): 227217.
Liu,
S.H., Wu, M.Q., Rao, M.J., Li, L.H. & Xiao, H.L. 2019. Preparation,
properties, and microstructure of graphite powder-containing conductive
concrete. Strength of Materials 51(1): 76-84.
Lux,
F. 1993. Models proposed to explain the electrical conductivity of mixtures
made of conductive and insulating materials. Journal of Materials Science 28(2): 285-301.
Martín,
I.S., Ursúa, A. & Sanchis, P. 2014. Modelling of PEM fuel cell performance:
Steady-state and dynamic experimental validation. Energies 7(2): 670-700.
Middelman,
E., Kout, W., Vogelaar, B., Lenssen, J. & De Waal, E. 2003. Bipolar plates
for PEM fuel cells. Journal of Power Sources 118(1-2): 44-46.
Mohd
Radzuan, N.A., Yusuf Zakaria, M., Sulong, A.B. & Sahari, J. 2017a. The
effect of milled carbon fibre filler on electrical conductivity in highly
conductive polymer composites. Composites Part B: Engineering 110:
153-160.
Mohd
Radzuan, N.A., Sulong, A.B. & Sahari, J. 2017b. A review of electrical
conductivity models for conductive polymer composite. International Journal
of Hydrogen Energy 42(14): 9262-9273.
Planes,
E., Flandin, L. & Alberola, N. 2012. Polymer composites bipolar plates for
PEMFCs. Energy Procedia 20: 311-323.
Pollet,
B.G., Kocha, S.S. & Staffell, I. 2019. Current status of automotive fuel
cells for sustainable transport. Current Opinion in Electrochemistry 16(2019): 90-95.
Qu,
M., Nilsson, F., Qin, Y., Yang, G., Pan, Y., Liu, X., Rodriguez, G.H., Chen,
J., Zhang, C. & Schubert, D.W. 2017. Electrical conductivity and mechanical
properties of melt-spun ternary composites comprising PMMA, carbon fibers and
carbon black. Composites Science and Technology 150: 24-31.
Radzuan, N.A.M., Sulong, A.B., Husaini, T., Majlan, E.H., Rosli, M.I. & Aman, M.F. 2019. Fabrication of multi-filler MCF/MWCNT/SG-based bipolar plates. Ceramics International 45(6): 7413-7418. doi:10.1016/j.ceramint.2019.01.028
Radzuan,
N.A.M., Sulong, A.B. & Rao Somalu, M. 2017. Electrical properties of
extruded milled carbon fibre and polypropylene. Journal of Composite
Materials 51(22): 3187-3195.
Rozlosnik,
N. 2009. New directions in medical biosensors employing poly(3,4-ethylenedioxy
thiophene) derivative-based electrodes. Analytical and Bioanalytical
Chemistry 395(3): 637-645.
Sharma,
S. & Pollet, B.G. 2012. Support materials for PEMFC and DMFC
electrocatalysts - A review. Journal of Power Sources 208: 96-119.
Shou,
D., Tang, Y., Ye, L., Fan, J. & Ding, F. 2013. Effective permeability of
gas diffusion layer in proton exchange membrane fuel cells. International
Journal of Hydrogen Energy 38(25): 10519-10526.
Suherman,
H., Sahari, J. & Sulong, A.B. 2013. Effect of small-sized conductive filler
on the properties of an epoxy composite for a bipolar plate in a PEMFC. Ceramics
International 39(6): 7159-7166.
Tavares,
L.B., Rocha, R.G. & Rosa, D.S. 2017. An organic bioactive pro-oxidant
behavior in thermal degradation kinetics of polypropylene films. Iranian
Polymer Journal 26(4): 273-280.
Ul-Islam,
M., Khan, S., Ullah, M.W. & Park, J.K. 2015. Bacterial cellulose
composites: Synthetic strategies and multiple applications in bio-medical and
electro-conductive fields. Biotechnology Journal 10(12): 1847-1861.
Wang,
F., Sun, D.L., Hong, R.Y. & Kumar, M.R. 2017. Surface treatment of carbon
nanoparticles by nitrogen/oxygen alternating current arc discharge and the
application in ABS/EPDM composites. Composites Part B: Engineering 129(2017): 97-106.
Wang,
W.L., He, S.M. & Lan, C.H. 2012. Protective graphite coating on metallic
bipolar plates for PEMFC applications. Electrochimica Acta 62: 30-35.
Wang,
Y., Leung, D.Y.C., Xuan, J. & Wang, H. 2016. A review on unitized regenerative
fuel cell technologies, part-A: Unitized regenerative proton exchange membrane
fuel cells. Renewable and Sustainable Energy Reviews 65: 961-977.
Wang,
Z., Fan, X., Wang, K., Deng, H., Chen, F. & Fu, Q. 2011. Fabrication of
polypropylene/carbon nanotubes composites via a sequential process of (rotating
solid-state mixing)-plus-(melt extrusion). Composites Science and Technology 71(11): 1397-1403.
Yang,
G., Yu, S., Kang, Z., Dohrmann, Y., Bender, G., Pivovar, B.S., Green Jr., J.B.,
Retterer, S.T., Cullen, D.A. & Zhang, F.Y. 2019. A novel PEMEC with 3D
printed non-conductive bipolar plate for low-cost hydrogen production from
water electrolysis. Energy Conversion and Management 182(February):
108-116.
Zakaria,
M.Y., Sulong, A.B., Sahari, J. & Suherman, H. 2015. Effect of the addition
of milled carbon fiber as a secondary filler on the electrical conductivity of
graphite/epoxy composites for electrical conductive material. Composites
Part B: Engineering 83: 75-80.
Zare,
Y. & Rhee, K.Y. 2020. Effects of carbon nanotubes and interphase properties
on the interfacial conductivity and electrical conductivity of polymer
nanocomposites. Polymer International 69(4): 413-422.
Zare,
Y. & Rhee, K.Y. 2019. Simplification and development of McLachlan model for
electrical conductivity of polymer carbon nanotubes nanocomposites assuming the
networking of interphase regions. Composites Part B: Engineering 156:
64-71.
*Corresponding author; email: afiqah@ukm.edu.my
|