Sains Malaysiana
50(7)(2021): 2079-2084
http://doi.org/10.17576/jsm-2021-5007-21
COVRATIO Statistic as A
Discrimination Method for Multivariate Normal Distribution
(Statistik COVRATIO sebagai Suatu
Kaedah Diskriminasi untuk Taburan Multivariat Normal)
NORLI
ANIDA ABDULLAH1*, AFERA MOHAMAD APANDI2, MOHD IQBAL
SHAMSUDHEEN3 & YONG ZULINA ZUBAIRI1
1Centre for Foundation Studies in Science, University
of Malaya, Jalan Universiti, 50603 Kuala Lumpur, Federal Territory, Malaysia
2Instistute of Advanced Studies, University
of Malaya, Jalan Universiti, 50603 Kuala Lumpur, Federal Territory, Malaysia
3Department
of Statistical Science, University College London, London, United Kingdom
Received:
21 February 2020/Accepted: 19 November 2020
ABSTRACT
The COVRATIO statistic has been used to identify the presence of outlier
in data, which is based on deletion approach, where the determinant of
covariance matrix for the full dataset excludes i-th row. This study proposes a
novel discrimination method for the multivariate normal (MVN) distribution
using the idea of COVRATIO statistic, denoted as
. The linear
discrimination function (LDF) for MVN distribution will be compared to the
statistic.
Simulation results showed that the
as
discrimination method performs better than the LDF with lower misclassification
probabilities in all cases considered. The interest in the discrimination
method arose in connection with the study of an application to discriminate the
shape of the human maxillary dental arches, thus
statistic may
be considered as an alternative.
Keywords: COVRATIO statistic; dental arch; discrimination method; linear
discrimination function; multivariate normal distribution
ABSTRAK
Statistik
COVRATIO telah digunakan untuk mengenal pasti kehadiran data luar dengan
menggunakan kaedah penghapusan, dengan baris i dari penentu matriks kovarians
dikeluarkan daripada set data penuh. Kajian ini mencadangkan kaedah diskriminasi
baru untuk taburan normal multivariat (MVN) menggunakan idea daripada statistik
COVRATIO, yang dikenali sebagai
. Fungsi diskriminasi linear (LDF) untuk
taburan MVN akan dibandingkan dengan kaedah tersebut. Hasil simulasi menunjukkan
bahawa statistik diskriminasi
adalah
lebih baik daripada LDF dengan kebarangkalian salah pengelasan yang lebih
rendah dalam semua kes yang dipertimbangkan. Kepentingan kaedah diskriminasi
timbul dalam kajian membezakan bentuk arkus pergigian maksila manusia dan
statistik
ini boleh digunakan sebagai
alternatif.
Kata kunci: Arkus
pergigian; fungsi diskriminasi linear; kaedah diskriminasi; statistik COVRATIO;
taburan multivariat normal
REFERENCES
Belsley,
D.A., Kuh, E. & Welsch, R.E. 1980. Regression Diagnostics: Identifying Influential Data and Sources of
Collinearity. Hoboken, New Jersey: John Wiley & Sons, Inc.
Costa,
L.D.F. & Cesar, R.M. 2009. Shape
Analysis and Classification: Theory and Practice. Florida: CRC Press.
Dass, S.C. & Li, M. 2009. Hierarchical mixture models for
assessing fingerprint individuality. The
Annals of Applied Statistics 3(4): 1448-1466.
Ghapor,
A.A., Zubairi, Y.Z., Mamun, A. & Rahmatullah Imon, A.H.M. 2014. On
detecting outlier in simple linear functional relationship model using
COVRATIO statistic. Pakistan Journal of Statistics 30(1):
129-142.
Ibrahim,
S., Rambli, A., Hussin, A.G. & Mohamed, I. 2013. Outlier detection in a
circular regression model using COVRATIO statistic. Communications in
Statistiscs-Simulation and Computation 42(10): 2272-2280.
Johnson,
R.A. & Wichern, D.W. 1992. Applied
Multivariate Statistical Analysis: Discrimination and Classification. 3rd
ed. Englewood Cliffs, New Jersey: Prentice Hall.
Lacko, D., Huysmans, T., Parizel, P.M., De Bruyne, G.,
Verwulgen, S., Van Hulle, M.M. & Sijbers, J. 2015. Evaluation of an
anthropometric shape model of the human scalp. Applied Ergonomics 48: 70-85.
Laganà, G., Di Fazio, V., Paoloni, V., Franchi, L., Cozza, P. & Lione, R. 2019. Geometric morphometric analysis of the palatal morphology in growing
subjects with skeletal open bite. European Journal of Orthodontics 41(3): 258-263.
Mardia,
K.V., Kent, J.T. & Bibby, J.M. 1979. Multivariate
Analysis. New York: Academic Press.
Moawed, S.A. & Osman, M.M. 2017. The robustness of binary
logistic regression and linear discriminant analysis for the classification and
differentiation between dairy cows and buffaloes. International Journal
of Statistics and Applications 7:
304-310.
Peña,
D. & Rodrı́guez, J. 2003. Descriptive measures of multivariate
scatter and
linear dependence. Journal of Multivariate Analysis 85(2): 361-374.
Rambli,
A., Yunus, R.M., Mohamed, I. & Hussin,
A.G. 2015. Outlier detection in a circular
regression model. Sains Malaysiana 44(7): 1027-1032.
Rijal,
O.M., Abdullah, N.A., Isa, Z.M., Noor, N.M.
& Tawfiq, O.F. 2012. A probability
distribution of shape for the dental maxillary arch using digital images. In 34th Annual International Conference of the IEEE Engineering-in-Medicine-and-Biology-Society
(EMBS). IEEE. pp. 5420-5423.
Rijal, O.M., Abdullah, N.A., Isa, Z.M., Davaei, F.A., Noor,
N.M. &
Tawfiq, O.F. 2011. A novel shape representation of the dental arch and its
applications in some dentistry problems. In 2011 Annual International
Conference of the IEEE Engineering in Medicine and Biology Society. IEEE. pp. 5092-5095.
Trunk, G.V. 1979. A problem of dimensionality: A simple
example. IEEE Transactions on Pattern Analysis and Machine Intelligence 3: 306-307.
Yergin,
E., Ozturk, C. & Sermet, B. 2001. Image processing techniques for
assessment of dental trays. In Proceedings
of the 23rd Annual International Conference of the IEEE Engineering in Medicine
and Biology Society 3. IEEE. pp.
2571-2573.
*Corresponding
author; email: norlie@um.edu.my
|