Sains Malaysiana 50(7)(2021): 2079-2084

http://doi.org/10.17576/jsm-2021-5007-21

 

COVRATIO Statistic as A Discrimination Method for Multivariate Normal Distribution

(Statistik COVRATIO sebagai Suatu Kaedah Diskriminasi untuk Taburan Multivariat Normal)

 

NORLI ANIDA ABDULLAH1*, AFERA MOHAMAD APANDI2, MOHD IQBAL SHAMSUDHEEN3 & YONG ZULINA ZUBAIRI1

 

1Centre for Foundation Studies in Science, University of Malaya, Jalan Universiti, 50603 Kuala Lumpur, Federal Territory, Malaysia

 

2Instistute of Advanced Studies, University of Malaya, Jalan Universiti, 50603 Kuala Lumpur, Federal Territory, Malaysia

 

3Department of Statistical Science, University College London, London, United Kingdom

 

Received: 21 February 2020/Accepted: 19 November 2020

 

ABSTRACT

The COVRATIO statistic has been used to identify the presence of outlier in data, which is based on deletion approach, where the determinant of covariance matrix for the full dataset excludes i-th row. This study proposes a novel discrimination method for the multivariate normal (MVN) distribution using the idea of COVRATIO statistic, denoted as . The linear discrimination function (LDF) for MVN distribution will be compared to the  statistic. Simulation results showed that the  as discrimination method performs better than the LDF with lower misclassification probabilities in all cases considered. The interest in the discrimination method arose in connection with the study of an application to discriminate the shape of the human maxillary dental arches, thus  statistic may be considered as an alternative.

 

Keywords: COVRATIO statistic; dental arch; discrimination method; linear discrimination function; multivariate normal distribution

 

ABSTRAK

Statistik COVRATIO telah digunakan untuk mengenal pasti kehadiran data luar dengan menggunakan kaedah penghapusan, dengan baris i dari penentu matriks kovarians dikeluarkan daripada set data penuh. Kajian ini mencadangkan kaedah diskriminasi baru untuk taburan normal multivariat (MVN) menggunakan idea daripada statistik COVRATIO, yang dikenali sebagai . Fungsi diskriminasi linear (LDF) untuk taburan MVN akan dibandingkan dengan kaedah tersebut. Hasil simulasi menunjukkan bahawa statistik diskriminasi  adalah lebih baik daripada LDF dengan kebarangkalian salah pengelasan yang lebih rendah dalam semua kes yang dipertimbangkan. Kepentingan kaedah diskriminasi timbul dalam kajian membezakan bentuk arkus pergigian maksila manusia dan statistik  ini boleh digunakan sebagai alternatif.

 

Kata kunci: Arkus pergigian; fungsi diskriminasi linear; kaedah diskriminasi; statistik COVRATIO; taburan multivariat normal

 

REFERENCES

Belsley, D.A., Kuh, E. & Welsch, R.E. 1980. Regression Diagnostics: Identifying Influential Data and Sources of Collinearity. Hoboken, New Jersey: John Wiley & Sons, Inc.

Costa, L.D.F. & Cesar, R.M. 2009. Shape Analysis and Classification: Theory and Practice. Florida: CRC Press.

Dass, S.C. & Li, M. 2009. Hierarchical mixture models for assessing fingerprint individuality. The Annals of Applied Statistics 3(4): 1448-1466.

Ghapor, A.A., Zubairi, Y.Z., Mamun, A. & Rahmatullah Imon, A.H.M. 2014. On detecting outlier in simple linear functional relationship model using
COVRATIO statistic. Pakistan Journal of Statistics 30(1): 129-142.

Ibrahim, S., Rambli, A., Hussin, A.G. & Mohamed, I. 2013. Outlier detection in a circular regression model using COVRATIO statistic. Communications in
Statistiscs-Simulation and Computation 42(10): 2272-2280.

Johnson, R.A. & Wichern, D.W. 1992. Applied Multivariate Statistical Analysis: Discrimination and Classification. 3rd ed. Englewood Cliffs, New Jersey: Prentice Hall.

Lacko, D., Huysmans, T., Parizel, P.M., De Bruyne, G., Verwulgen, S., Van Hulle, M.M. & Sijbers, J. 2015. Evaluation of an anthropometric shape model of the human scalp. Applied Ergonomics 48: 70-85.

Laganà, G., Di Fazio, V., Paoloni, V., Franchi, L., Cozza, P.  & Lione, R. 2019. Geometric    morphometric analysis of the palatal morphology in growing subjects with skeletal open bite. European Journal of Orthodontics 41(3): 258-263.

Mardia, K.V., Kent, J.T. & Bibby, J.M. 1979. Multivariate Analysis. New York: Academic Press.

Moawed, S.A. & Osman, M.M. 2017. The robustness of binary logistic regression and linear discriminant analysis for the classification and differentiation between dairy cows and buffaloes. International Journal of Statistics and Applications 7: 304-310.

Peña, D. & Rodrı́guez, J. 2003. Descriptive measures of multivariate scatter and
linear dependence. Journal of Multivariate Analysis 85(2): 361-374.

Rambli, A., Yunus, R.M., Mohamed, I. & Hussin, A.G. 2015. Outlier detection in a circular regression model. Sains Malaysiana 44(7): 1027-1032.

Rijal, O.M., Abdullah, N.A., Isa, Z.M., Noor, N.M. & Tawfiq, O.F. 2012. A probability distribution of shape for the dental maxillary arch using digital images. In 34th Annual International Conference of the IEEE Engineering-in-Medicine-and-Biology-Society (EMBS). IEEE. pp. 5420-5423.

Rijal, O.M., Abdullah, N.A., Isa, Z.M., Davaei, F.A., Noor, N.M. & Tawfiq, O.F. 2011. A novel shape representation of the dental arch and its applications in some dentistry problems. In 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE. pp. 5092-5095.

Trunk, G.V. 1979. A problem of dimensionality: A simple example. IEEE Transactions on Pattern Analysis and Machine Intelligence 3: 306-307.

Yergin, E., Ozturk, C. & Sermet, B. 2001. Image processing techniques for assessment of dental trays. In Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society 3. IEEE. pp. 2571-2573.

 

*Corresponding author; email: norlie@um.edu.my

 

 

 

previous