Sains Malaysiana
50(7)(2021): 2109-2121
http://doi.org/10.17576/jsm-2021-5007-24
Risk Analysis of the Copula Dependent Aggregate Discounted
Claims with Weibull Inter-Arrival Time
(Analisis
Risiko Agregat Tuntutan Terdiskaun yang Bersandar Secara Kopula dengan antara Waktu Ketibaan
Bertaburan Weibull)
SITI NORAFIDAH MOHD RAMLI1, SHARIFAH FARAH SYED
YUSOFF ALHABSHI1* & NUR ATIKAH MOHAMED ROZALI2
1Department of
Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor Darul
Ehsan, Malaysia
2Actuarial Services
Department, Malaysian Reinsurance Berhad, 11th Floor, Bangunan Malaysian Re., No.
17, Lorong Dungun, Damansara Height, 50490 Kuala Lumpur, Federal Territory, Malaysia
Received: 17 July 2020/Accepted:
16 November 2020
ABSTRACT
We model the recursive moments of aggregate discounted
claims, assuming the inter-claim arrival time follows a Weibull distribution to
accommodate overdispersed and underdispersed data set. We use a copula to
represent the dependence structure between the inter-claim arrival time and its
subsequent claim amount. We then use the Laplace inversion via the Gaver-Stehfest algorithm to solve numerically the
first and second moments, which takes the form of a Volterra integral equation
(VIE). We compute the average and variance of the aggregate discounted claims
under the Farlie-Gumbel-Morgenstern (FGM) copula and conduct a sensitivity
analysis under various Weibull inter-claim parameters and claim-size
parameters. The comparison between the equidispersed, overdispersed and
underdispersed counting processes shows that when claims arrive at times that
vary more than is expected, insured lives can expect to pay higher premium, and vice versa for the case of claims arriving at times that vary less than
expected. Upon comparing the Weibull risk process with an equivalent Poisson
process, we also found that copulas with a wider range of dependency parameter
such as the Frank and Heavy Right Tail (HRT), have a greater impact on the
value of moments as opposed to modeling under FGM copula with weak dependence
structure.
Keywords: FGM copula; Gaver-Stehfest algorithm; Laplace
transform; Volterra integral equation; Weibull count model
ABSTRAK
Kajian ini memodelkan momen rekursif tuntutan agregat
terdiskaun, dengan andaian bahawa waktu ketibaan antara tuntutan mengikut
taburan Weibull bagi memenuhi keperluan set data yang terlebih atau terkurang
serak. Kajian ini menggunakan kopula untuk mewakili struktur kebersandaran
antara waktu ketibaan antara tuntutan dan jumlah tuntutan berikutnya. Kajian
ini mengggunakan songsangan Laplace melalui algoritma Gaver-Stehfest untuk
menyelesaikan secara berangka momen pertama dan kedua dalam bentuk persamaan kamiran
Volterra (VIE). Kajian ini menghitung purata dan varians tuntutan agregat
terdiskaun di bawah kopula Farlie-Gumbel-Morgenstern (FGM) dan analisis
kepekaan dijalankan dengan mengubah parameter Weibull, waktu ketibaan antara
tuntutan dan parameter saiz tuntutan. Perbandingan antara proses pengiraan sama
serakan, terlebih serakan atau terkurang serakan menunjukkan bahawa apabila
tuntutan tiba pada waktu yang bervariasi lebih dari yang dijangkakan, pihak
yang diinsurans perlu membayar premium yang lebih tinggi dan sebaliknya bagi
kes tuntutan yang tiba pada waktu yang bervariasi kurang dari yang dijangkakan.
Selain perbandingan proses risiko Weibull dengan proses Poisson yang setara,
kajian ini juga mendapati bawah kopula dengan julat parameter kebersandaran
yang lebih luas seperti Frank dan Heavy Right Tail (HRT), memberi kesan yang
lebih besar kepada nilai momen berbanding di bawah kopula FGM dengan struktur
kebersandaran yang lemah.
Kata kunci: Algoritma Gaver-Stehfest; kopula FGM; model kira
Weibull; persamaan kamiran Volterra; transformasi Laplace
REFERENCES
Albrecher, H., Bladt, M. & Vatamidou, E. 2020. Efficient
simulation of ruin probabilities when claims are mixtures of heavy and light
tails. Methodology and Computing in Applied Probability 43: 1-19.
Balakrishna, N. & Lai, C.D. 2009. Distributions expressed
as copulas. In Continuous Bivariate Distributions. Berlin: Springer. pp.
67-103.
Bargès, M., Loisel, S., Cossette, H. & Marceau, É. 2011.
On the moments of aggregate discounted claims with dependence introduced by a
FGM copula. ASTIN Bulletin 41(1): 215-238.
Boshnakov, G., Kharrat, T. & McHale, I.G. 2017. A
bivariate Weibull count model for forecasting association football scores. International
Journal of Forecasting 33(2): 458-466.
Davies, B. & Martin, B. 1979. Numerical inversion of the
laplace transform: A survey and comparison of methods. Journal of
Computational Physics 33(1): 1-32.
Delbaen, F. & Haezendonck, J. 1987. Classical risk theory
in an economic environment. Insurance Mathematics and Economics 6(2):
85-116.
Garrido, J., Genest, C. & Schulz, J. 2016. Generalized
linear models for dependent frequency and severity of insurance claims. Insurance:
Mathematics and Economics 70: 205-215.
Gaver, D.P. 1966. Observing stochastic processes, and
approximate transform inversion. Operations Research 14(3): 444-459.
Harris, C.K. & Bourne, S.J. 2017. Computing the
distribution of pareto sums using laplace transformation and stehfest
inversion. Pure and Applied Geophysics 174(5): 2039-2075.
Hua, L. 2015. Tail negative dependence and its applications
for aggregate loss modeling. Insurance: Mathematics and Economics 61:
135-145.
Kamaruzaman, I.F., Wan Zin, W.Z. & Mohd Ariff, N. 2019. A
generalized bivariate copula for flood analysis in Peninsular Malaysia. Malaysian
Journal of Fundamental and Applied Sciences 15(1): 38-49.
Krämer, N., Brechmann, E.C., Silvestrini, D. & Czado, C.
2013. Total loss estimation using copula-based regression models. Insurance:
Mathematics and Economics 53(3): 829-839.
Krougly, Z., Davison, M. & Aiyar, S. 2017. The role of
high precision arithmetic in calculating numerical laplace and inverse laplace
transforms. Applied Mathematics 8(04): 562-589.
Kularatne, T.D., Li, J. & Pitt, D. 2020. On the use of
Archimedean copulas for insurance modelling. Annals of Actuarial Science 15(1):
1-25.
Léveillé, G. & Garrido, J. 2001. Recursive moments of
compound renewal sums with discounted claims. Scandinavian Actuarial Journal 2001(2): 98-110.
Liu, H. 2019. Reliability and maintenance modeling for
competing risk processes with Weibull inter-arrival shocks. Applied
Mathematical Modelling 71: 194-207.
Mao, T. & Yang, F. 2015. Risk concentration based on
Expectiles for extreme risks under FGM copula. Insurance: Mathematics and
Economics 64: 429-439.
McShane, B., Adrian, M., Bradlow, E.T. & Fader, P.S.
2008. Count models based on weibull interarrival times. Journal of Business
and Economic Statistics 26(3): 369-378.
Mohd Ramli, S.N. & Jang, J. 2020. Defaultable bond
pricing under the jump diffusion model with copula dependence structure. Sains
Malaysiana 49(4): 941-952.
Mohd Ramli, S.N. & Jang, J. 2014. Neumann series on the
recursive moments of copula-dependent aggregate discounted claims. Risks 2(2): 195-210.
Mohd Ramli, S.N., Mohamed Rozali, N.A., Syed Yusoff Alhabshi,
S.F. & Hashim, I. 2018. Laplace transform on the recursive moments of
copula-dependent aggregate discounted claims. AIP Conference Proceedings 2184: 050017.
Montella, C. 2008. LSV modelling of electrochemical systems
through numerical inversion of Laplace transforms. I - the GS-LSV algorithm. Journal
of Electroanalytical Chemistry 614(1-2): 121-130.
MunichRe. 2018. NatCatSERVICE. http://natcatservice.munichre.com. Accessed on February 14, 2018.
Nelsen, R.B. 2006. An Introduction to Copulas. In Springer
Series in Statistics. Berlin: Springer. pp. 51-108.
Qian, L., Jin, Z., Wang, W. & Chen, L. 2018. Pricing
dynamic fund protections for a hyperexponential jump diffusion process. Communications
in Statistics - Theory and Methods 47(1): 210-221.
Shamiri, A., Hamzah, N.A. & Pirmoradian, A. 2011. Tail
dependence estimate in financial market risk management: Clayton-Gumbel Copula
approach. Sains Malaysiana 40(8): 927-935.
Shi, P., Feng, X. & Ivantsova, A. 2015. Dependent
frequency-severity modeling of insurance claims. Insurance: Mathematics and
Economics 64: 417-428.
Stehfest, H. 1970. Algorithm 368: Numerical inversion of
Laplace transforms [D5]. Communications of the ACM 13(1): 47-49.
Tosunoglu, F. & Kisi, O. 2016. Joint modelling of annual
maximum drought severity and corresponding duration. Journal of Hydrology 543(Part B): 406-422.
Usábel, M. 1999. Calculating multivariate ruin probabilities
via Gaver-Stehfest inversion technique. Insurance: Mathematics and Economics 25(2): 133-142.
Venter, G.G. 2002. Tails of copulas. In Proceedings of the
Casualty Actuarial Society 89: 68-113.
Waters, H.R. 1983. Probability of ruin for a risk process
with claims cost inflation. Scandinavian Actuarial Journal 1983(3):
148-164.
Woo, J.K. & Cheung, E.C.K. 2013. A note on discounted
compound renewal sums under dependency. Insurance: Mathematics and Economics 52(2): 170-179.
Yang, H. & Zhang, L. 2001. On the distribution of surplus
immediately before ruin under interest force. Statistics and Probability
Letters 29(2): 247-255.
*Corresponding author; email: shfarah@ukm.edu.my
|