Sains Malaysiana 50(7)(2021): 2109-2121

http://doi.org/10.17576/jsm-2021-5007-24

 

Risk Analysis of the Copula Dependent Aggregate Discounted Claims with Weibull Inter-Arrival Time

(Analisis Risiko Agregat Tuntutan Terdiskaun yang Bersandar Secara Kopula dengan antara Waktu Ketibaan Bertaburan Weibull)

 

SITI NORAFIDAH MOHD RAMLI1, SHARIFAH FARAH SYED YUSOFF ALHABSHI1* & NUR ATIKAH MOHAMED ROZALI2

 

1Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

2Actuarial Services Department, Malaysian Reinsurance Berhad, 11th Floor, Bangunan Malaysian Re., No. 17, Lorong Dungun, Damansara Height, 50490 Kuala Lumpur, Federal Territory, Malaysia

 

Received: 17 July 2020/Accepted: 16 November 2020

 

ABSTRACT

We model the recursive moments of aggregate discounted claims, assuming the inter-claim arrival time follows a Weibull distribution to accommodate overdispersed and underdispersed data set. We use a copula to represent the dependence structure between the inter-claim arrival time and its subsequent claim amount. We then use the Laplace inversion via the Gaver-Stehfest algorithm to solve numerically the first and second moments, which takes the form of a Volterra integral equation (VIE). We compute the average and variance of the aggregate discounted claims under the Farlie-Gumbel-Morgenstern (FGM) copula and conduct a sensitivity analysis under various Weibull inter-claim parameters and claim-size parameters. The comparison between the equidispersed, overdispersed and underdispersed counting processes shows that when claims arrive at times that vary more than is expected, insured lives can expect to pay higher premium, and vice versa for the case of claims arriving at times that vary less than expected. Upon comparing the Weibull risk process with an equivalent Poisson process, we also found that copulas with a wider range of dependency parameter such as the Frank and Heavy Right Tail (HRT), have a greater impact on the value of moments as opposed to modeling under FGM copula with weak dependence structure.

 

Keywords: FGM copula; Gaver-Stehfest algorithm; Laplace transform; Volterra integral equation; Weibull count model 

 

ABSTRAK

Kajian ini memodelkan momen rekursif tuntutan agregat terdiskaun, dengan andaian bahawa waktu ketibaan antara tuntutan mengikut taburan Weibull bagi memenuhi keperluan set data yang terlebih atau terkurang serak. Kajian ini menggunakan kopula untuk mewakili struktur kebersandaran antara waktu ketibaan antara tuntutan dan jumlah tuntutan berikutnya. Kajian ini mengggunakan songsangan Laplace melalui algoritma Gaver-Stehfest untuk menyelesaikan secara berangka momen pertama dan kedua dalam bentuk persamaan kamiran Volterra (VIE). Kajian ini menghitung purata dan varians tuntutan agregat terdiskaun di bawah kopula Farlie-Gumbel-Morgenstern (FGM) dan analisis kepekaan dijalankan dengan mengubah parameter Weibull, waktu ketibaan antara tuntutan dan parameter saiz tuntutan. Perbandingan antara proses pengiraan sama serakan, terlebih serakan atau terkurang serakan menunjukkan bahawa apabila tuntutan tiba pada waktu yang bervariasi lebih dari yang dijangkakan, pihak yang diinsurans perlu membayar premium yang lebih tinggi dan sebaliknya bagi kes tuntutan yang tiba pada waktu yang bervariasi kurang dari yang dijangkakan. Selain perbandingan proses risiko Weibull dengan proses Poisson yang setara, kajian ini juga mendapati bawah kopula dengan julat parameter kebersandaran yang lebih luas seperti Frank dan Heavy Right Tail (HRT), memberi kesan yang lebih besar kepada nilai momen berbanding di bawah kopula FGM dengan struktur kebersandaran yang lemah.

 

Kata kunci: Algoritma Gaver-Stehfest; kopula FGM; model kira Weibull; persamaan kamiran Volterra; transformasi Laplace

 

REFERENCES

Albrecher, H., Bladt, M. & Vatamidou, E. 2020. Efficient simulation of ruin probabilities when claims are mixtures of heavy and light tails. Methodology and Computing in Applied Probability 43: 1-19.

Balakrishna, N. & Lai, C.D. 2009. Distributions expressed as copulas. In Continuous Bivariate Distributions. Berlin: Springer. pp. 67-103.

Bargès, M., Loisel, S., Cossette, H. & Marceau, É. 2011. On the moments of aggregate discounted claims with dependence introduced by a FGM copula. ASTIN Bulletin 41(1): 215-238.

Boshnakov, G., Kharrat, T. & McHale, I.G. 2017. A bivariate Weibull count model for forecasting association football scores. International Journal of Forecasting 33(2): 458-466.

Davies, B. & Martin, B. 1979. Numerical inversion of the laplace transform: A survey and comparison of methods. Journal of Computational Physics 33(1): 1-32.

Delbaen, F. & Haezendonck, J. 1987. Classical risk theory in an economic environment. Insurance Mathematics and Economics 6(2): 85-116.

Garrido, J., Genest, C. & Schulz, J. 2016. Generalized linear models for dependent frequency and severity of insurance claims. Insurance: Mathematics and Economics 70: 205-215.

Gaver, D.P. 1966. Observing stochastic processes, and approximate transform inversion. Operations Research 14(3): 444-459.

Harris, C.K. & Bourne, S.J. 2017. Computing the distribution of pareto sums using laplace transformation and stehfest inversion. Pure and Applied Geophysics 174(5): 2039-2075.

Hua, L. 2015. Tail negative dependence and its applications for aggregate loss modeling. Insurance: Mathematics and Economics 61: 135-145.

Kamaruzaman, I.F., Wan Zin, W.Z. & Mohd Ariff, N. 2019. A generalized bivariate copula for flood analysis in Peninsular Malaysia. Malaysian Journal of Fundamental and Applied Sciences 15(1): 38-49.

Krämer, N., Brechmann, E.C., Silvestrini, D. & Czado, C. 2013. Total loss estimation using copula-based regression models. Insurance: Mathematics and Economics 53(3): 829-839.

Krougly, Z., Davison, M. & Aiyar, S. 2017. The role of high precision arithmetic in calculating numerical laplace and inverse laplace transforms. Applied Mathematics 8(04): 562-589.

Kularatne, T.D., Li, J. & Pitt, D. 2020. On the use of Archimedean copulas for insurance modelling. Annals of Actuarial Science 15(1): 1-25.

Léveillé, G. & Garrido, J. 2001. Recursive moments of compound renewal sums with discounted claims. Scandinavian Actuarial Journal 2001(2): 98-110.

Liu, H. 2019. Reliability and maintenance modeling for competing risk processes with Weibull inter-arrival shocks. Applied Mathematical Modelling 71: 194-207.

Mao, T. & Yang, F. 2015. Risk concentration based on Expectiles for extreme risks under FGM copula. Insurance: Mathematics and Economics 64: 429-439.

McShane, B., Adrian, M., Bradlow, E.T. & Fader, P.S. 2008. Count models based on weibull interarrival times. Journal of Business and Economic Statistics 26(3): 369-378.

Mohd Ramli, S.N. & Jang, J. 2020. Defaultable bond pricing under the jump diffusion model with copula dependence structure. Sains Malaysiana 49(4): 941-952.

Mohd Ramli, S.N. & Jang, J. 2014. Neumann series on the recursive moments of copula-dependent aggregate discounted claims. Risks 2(2): 195-210.

Mohd Ramli, S.N., Mohamed Rozali, N.A., Syed Yusoff Alhabshi, S.F. & Hashim, I. 2018. Laplace transform on the recursive moments of copula-dependent aggregate discounted claims. AIP Conference Proceedings 2184: 050017.

Montella, C. 2008. LSV modelling of electrochemical systems through numerical inversion of Laplace transforms. I - the GS-LSV algorithm. Journal of Electroanalytical Chemistry 614(1-2): 121-130.

MunichRe. 2018. NatCatSERVICE. http://natcatservice.munichre.com. Accessed on February 14, 2018.

Nelsen, R.B. 2006. An Introduction to Copulas. In Springer Series in Statistics. Berlin: Springer. pp. 51-108.

Qian, L., Jin, Z., Wang, W. & Chen, L. 2018. Pricing dynamic fund protections for a hyperexponential jump diffusion process. Communications in Statistics - Theory and Methods 47(1): 210-221.

Shamiri, A., Hamzah, N.A. & Pirmoradian, A. 2011. Tail dependence estimate in financial market risk management: Clayton-Gumbel Copula approach. Sains Malaysiana 40(8): 927-935.

Shi, P., Feng, X. & Ivantsova, A. 2015. Dependent frequency-severity modeling of insurance claims. Insurance: Mathematics and Economics 64: 417-428.

Stehfest, H. 1970. Algorithm 368: Numerical inversion of Laplace transforms [D5]. Communications of the ACM 13(1): 47-49.

Tosunoglu, F. & Kisi, O. 2016. Joint modelling of annual maximum drought severity and corresponding duration. Journal of Hydrology 543(Part B): 406-422.

Usábel, M. 1999. Calculating multivariate ruin probabilities via Gaver-Stehfest inversion technique. Insurance: Mathematics and Economics 25(2): 133-142.

Venter, G.G. 2002. Tails of copulas. In Proceedings of the Casualty Actuarial Society 89: 68-113.

Waters, H.R. 1983. Probability of ruin for a risk process with claims cost inflation. Scandinavian Actuarial Journal 1983(3): 148-164.

Woo, J.K. & Cheung, E.C.K. 2013. A note on discounted compound renewal sums under dependency. Insurance: Mathematics and Economics 52(2): 170-179.

Yang, H. & Zhang, L. 2001. On the distribution of surplus immediately before ruin under interest force. Statistics and Probability Letters 29(2): 247-255.


*Corresponding author; email: shfarah@ukm.edu.my

 

 

previous